×

Modeling biological invasions into periodically fragmented environments. (English) Zbl 1102.92057

Summary: Range expansion of a single species in a regularly striped environment is studied by using an extended Fisher model, in which the rates of diffusion and reproduction periodically fluctuate between favorable and unfavorable habitats. The model is analyzed for two initial conditions: the initial population density is concentrated on a straight line or at the origin. For each case, we derive a mathematical formula which characterizes the spatio-temporal pattern of range expansion. When the initial distribution starts from a straight line, it evolves to a traveling periodic wave (TPW), whose frontal speed is analytically determinable. When the range starts from the origin, it tends to expand radially at a constant average speed in each direction (ray speed) keeping its frontal envelope in a similar shape. By examining the relation between the ray speed and the TPW speed, we derive the ray speed in a parametric form, from which the envelope of the expanding range can be predicted. Thus we analyze how the pattern and speed of the range expansion are affected by the pattern and scale of fragmentation, and the qualities of favorable and unfavorable habitats.
The major results include: (1) The envelope of the expanding range show a variety of patterns, nearly circular, oval-like, spindle-like, depending on parameter values; (2) All these patterns are elongated in the direction of stripes; (3) When the scale of fragmentation is enlarged without changing the relative spatial pattern, the ray speed in any direction increases, i.e., the rate of range expansion increases.

MSC:

92D40 Ecology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] Andow, D.; Kareiva, P.; Levin, S.; Okubo, A., Spread of invading organisms, Landscape Ecol., 4, 177-188 (1990)
[2] Aronson, D. G.; Weinberger, H. F., Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, (Goldstein, E. A., Partial Differential Equations and Related Topics. Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, Vol. 446 (1975), Springer: Springer Berlin), 5-49 · Zbl 0325.35050
[3] Cantrell, R. S.; Cosner, C., Diffusive logistic equations with indefinite weights: population models in disrupted environments, Proc. Roy. Soc Edinburgh, 112A, 293-318 (1989) · Zbl 0711.92020
[4] Cantrell, R. S.; Cosner, C., The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29, 315-338 (1991) · Zbl 0722.92018
[5] Cantrell, R. S.; Cosner, C., Spatial heterogeneity and critical patch size: area effects via diffusion in closed environments, J. Theor. Biol., 209, 161-171 (2001)
[6] Collingham, Y. C.; Hill, M. O.; Huntley, B., The migration of sessile organisms: a simulation model with measurable parameters, J. Vegetation Sci., 7, 831-846 (1996)
[7] Durrett, R.; Levin, S. A., The importance of being discrete (and spatial), Theor. Popul. Biol., 46, 363-394 (1994) · Zbl 0846.92027
[8] Etter, R. J.; Caswell, H., The advantages of dispersal in a patchy environment: effects of disturbance in a cellular automaton model, (Eckelbarger, K. J.; Young, C. M., Reproduction, Larval Biology and Recruitment in the Deep-sea Benthos (1994), Columbia University Press: Columbia University Press New York), 285-305
[9] Fife, P.C., 1979. Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics, Vol. 28. Springer, Berlin/Heidelberg/New York.; Fife, P.C., 1979. Mathematical Aspects of Reacting and Diffusing Systems. Lecture Notes in Biomathematics, Vol. 28. Springer, Berlin/Heidelberg/New York. · Zbl 0403.92004
[10] Fisher, R. A., The wave of advance of advantageous genes, Ann. Eugenics (Lond.), 7, 255-369 (1937) · JFM 63.1111.04
[11] Freidlin, M.I., 1984. On wavefront propagation in periodic media. Stochastic Analysis Applications, Advances in Probability and Related Topics, Vol. 7, pp. 147-166.; Freidlin, M.I., 1984. On wavefront propagation in periodic media. Stochastic Analysis Applications, Advances in Probability and Related Topics, Vol. 7, pp. 147-166. · Zbl 0549.60054
[12] Freidlin, M. I., Limit theorems for large deviations and reaction-diffusion equations, Ann. Probab., 13, 639-675 (1985) · Zbl 0576.60070
[13] Gartner, J.; Freidlin, M. I., On the propagation of concentration waves in periodic and random media, Soviet Math. Dokl., 20, 1282-1286 (1979) · Zbl 0447.60060
[14] Gilpin, M., Hanski, I. (Eds.), 1991. Metapopulation Dynamics: Empirical and Theoretical Investigations. Academic Press, New York.; Gilpin, M., Hanski, I. (Eds.), 1991. Metapopulation Dynamics: Empirical and Theoretical Investigations. Academic Press, New York.
[15] Hanski, I., 1999. Metapopulation Ecology. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford, 313pp.; Hanski, I., 1999. Metapopulation Ecology. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford, 313pp.
[16] Higgins, H.; Richardson, D. M.; Cowling, R. M., Modeling invasive plant spread: the role of plant-environment interactions and model structure, Ecology, 77, 2043-2054 (1996)
[17] Hudson, W., Zinner, B., 1995. Existence of travelling waves for reaction diffusion equations of Fisher type in periodic media. In: Boundary Problems for Functional Differential Equations. World Scientific, Singapore, pp. 187-199.; Hudson, W., Zinner, B., 1995. Existence of travelling waves for reaction diffusion equations of Fisher type in periodic media. In: Boundary Problems for Functional Differential Equations. World Scientific, Singapore, pp. 187-199. · Zbl 0846.35062
[18] Kareiva, P.; Wennergren, U., Connecting landscape patterns to ecosystem and population processes, Nature, 373, 299-302 (1995)
[19] Kolmogorov, A. N.; Petrovsky, I. G.; Piskunov, N. S., Etude de l’equation de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique, Moskow Univ. Math. Bull., 1, 1-25 (1937) · Zbl 0018.32106
[20] Kubo, T.; Iwasa, Y.; Furumoto, N., Forest spatial dynamics with gap expansion: total gap area and gap size distribution, J. Theor. Biol., 180, 229-246 (1996)
[21] Lande, R., Extinction thresholds in demographic models of territorial populations, Amer. Nat., 130, 624-645 (1987)
[22] Lewis, M. A.; Kareiva, P., Allee dynamics and the spread of invading organisms, Theor. Popul. Biol., 43, 141-158 (1993) · Zbl 0769.92025
[23] Malanson, G. P.; Cairns, D. M., Effects of dispersal, population delays, and forest fragmentation on tree migration rates, Plant Ecol., 131, 67-79 (1997)
[24] Nee, N.; May, R. M., Patch removal favour inferior competitors, J. Ani. Ecol., 61, 37-40 (1992)
[25] Ohsawa, K.; Kawasaki, K.; Takasu, F.; Shigesada, N., Recurrent habitat disturbance and species diversity in a multiple-competitive species system, J. Theoret. Biol., 216, 123-138 (2002)
[26] Okubo, A., Diffusion and Ecological Problems: Mathematical Models (1980), Springer: Springer New York · Zbl 0422.92025
[27] Papanicolaou, G.; Xin, J., Reaction-diffusion fronts in periodically layered media, J. Stat. Phys., 63, 915-932 (1991)
[28] Shigesada, N.; Kawasaki, K., Biological Invasions; Theory and Practice, Oxford Series in Ecology and Evolution (1997), Oxford University Press: Oxford University Press Oxford
[29] Shigesada, N.; Kawasaki, K.; Teramoto, E., Traveling periodic waves in heterogeneous environments, Theor. Popul. Biol., 30, 143-160 (1986) · Zbl 0591.92026
[30] Shigesada, N.; Kawasaki, K.; Teramoto, E., The speeds of traveling frontal waves in Heterogeneous environments, (Teramoto, E.; Yamaguti, M., Mathematical Topics in Population Biology, Morphogenesis and Neurosciences. Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, Lecture Notes in Biomathematics, Vol. 71 (1987), Springer: Springer Berlin), 87-97 · Zbl 0653.92016
[31] Skellam, J. G., Random dispersal in theoretical populations, Biometrika, 38, 196-218 (1951) · Zbl 0043.14401
[32] Soule, M.E., Wilcox, B.A. (Eds.), 1980. Conservation Biology: An Evolutionary Ecological Approach. Sunderland, MA, Sinauer.; Soule, M.E., Wilcox, B.A. (Eds.), 1980. Conservation Biology: An Evolutionary Ecological Approach. Sunderland, MA, Sinauer.
[33] Takasu, F., Shiraishi, M., Kawasaki, K., Shigesada, N., 1999. Mathematical models for biological invasions—competition for open spaces. In: Yano, E., Matsuo, K., Shiyomi, M., Andow, D.A. (Eds.), Biological Invasions of Ecosystem by Pests and Beneficial Organisms, NIAES Series, Vol. 3, National Institute of Agro-Environmental Sciences, Ministry of Agriculture, Forestry and Fisheries, Tsukuba. pp. 78-87.; Takasu, F., Shiraishi, M., Kawasaki, K., Shigesada, N., 1999. Mathematical models for biological invasions—competition for open spaces. In: Yano, E., Matsuo, K., Shiyomi, M., Andow, D.A. (Eds.), Biological Invasions of Ecosystem by Pests and Beneficial Organisms, NIAES Series, Vol. 3, National Institute of Agro-Environmental Sciences, Ministry of Agriculture, Forestry and Fisheries, Tsukuba. pp. 78-87.
[34] Tilman, D.; Kareiva, P., Spatial Ecology. The Role of Space in Population Dynamics and Interspecific Interactions (1997), Princeton University Press: Princeton University Press Princeton
[35] Tilman, D.; Lehman, C. L.; Yin, C., Habitat destruction, dispersal, and deterministic extinction in competitive communities, Am. Nat., 149, 407-435 (1997)
[36] Weinberger, H. F., Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13, 353-396 (1982) · Zbl 0529.92010
[37] Weinberger, H. F., On spreading speeds and travelling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45, 511-548 (2002) · Zbl 1058.92036
[38] Xin, J., Front propagation in heterogeneous media, SIAM Rev., 42, 2, 161-230 (2000) · Zbl 0951.35060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.