×

Evaluation of adaptive reconciliation protocols for CV-QKD using systematic polar codes. (English) Zbl 1542.81438

Summary: Quantum key distribution is a secure cryptographic technology that enables two authenticated parties to share secret keys. Information reconciliation is an essential step in continuous-variable quantum key distribution protocols, which affects both the complexity and performance of the system. This paper reviews adaptive reconciliation protocols and also proposes a new efficient scheme using systematic polar codes. The proposed scheme utilizes adaptive polar codes, where the code rates are determined by the channel condition. Additionally, a compact function is presented to set the optimum code rate for a given channel condition. Simulation results show that the proposed scheme can significantly increase reconciliation efficiency and reduce the overall computational complexity by reducing the average number of retransmissions, without significant reduction in effective secret key length.

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)
94A60 Cryptography
Full Text: DOI

References:

[1] Grosshans, F.; Grangier, P., Continuous variable quantum cryptography using coherent states, Phys. Rev. Lett., 88, 5, 2002 · doi:10.1103/PhysRevLett.88.057902
[2] Milicevic, M., Feng, C., Zhang, L.M., Gulak, P.G.: Key reconciliation with low-density parity-check codes for long-distance quantum cryptography. arXiv preprint arXiv:1702.07740 (2017)
[3] Feng, Y.; Wang, YJ; Qiu, R.; Zhang, K.; Ge, H.; Shan, Z.; Jiang, XQ, Virtual channel of multidimensional reconciliation in a continuous-variable quantum key distribution, Phys. Rev. A, 103, 3, 2021 · doi:10.1103/PhysRevA.103.032603
[4] Wang, X.; Zhang, Y.; Yu, S.; Guo, H., High speed error correction for continuous-variable quantum key distribution with multi-edge type ldpc code, Sci. Rep., 8, 1, 10543, 2018 · doi:10.1038/s41598-018-28703-4
[5] Leverrier, A.; Grosshans, F.; Grangier, P., Finite-size analysis of a continuous-variable quantum key distribution, Phys. Rev. A, 81, 6, 2010 · doi:10.1103/PhysRevA.81.062343
[6] Feng, Y.; Qiu, R.; Zhang, K.; Jiang, XQ; Zhang, M.; Huang, P.; Zeng, G., Secret key rate of continuous-variable quantum key distribution with finite codeword length, Sci. China Inf. Sci., 66, 8, 2023 · doi:10.1007/s11432-022-3656-4
[7] Elkouss, D., Martinez-Mateo, J., Martin, V.: Information reconciliation for quantum key distribution. arXiv preprint arXiv:1007.1616 (2010)
[8] Wang, X., Zhang, Y.C., Li, Z., Xu, B., Yu, S., Guo, H.: Efficient rate-adaptive reconciliation for continuous-variable quantum key distribution. arXiv preprint arXiv:1703.04916 (2017)
[9] Martinez-Mateo, J., Elkouss, D., Martin, V.: Blind reconciliation. arXiv preprint arXiv:1205.5729 (2012)
[10] Elkouss, D., Martínez-Mateo, J., Martin, V.: Secure rate-adaptive reconciliation. In: 2010 International Symposium On Information Theory and its Applications, pp. 179-184. IEEE (2010)
[11] Elkouss, D.; Martinez-Mateo, J.; Martin, V., Analysis of a rate-adaptive reconciliation protocol and the effect of leakage on the secret key rate, Phys. Rev. A, 87, 4, 2013 · doi:10.1103/PhysRevA.87.042334
[12] Arikan, E., Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels, IEEE Trans. Inf. Theory, 55, 7, 3051-3073, 2009 · Zbl 1367.94149 · doi:10.1109/TIT.2009.2021379
[13] Cao, Z.; Chen, X.; Chai, G.; Liang, K.; Yuan, Y., Rate-adaptive polar-coding-based reconciliation for continuous-variable quantum key distribution at low signal-to-noise ratio, Phys. Rev. Appl., 19, 2023 · doi:10.1103/PhysRevApplied.19.044023
[14] Xie, J.; Jiang, C.; Lin, J.; Jiang, ZL; Wang, J.; Fang, J., Blind reconciliation based on inverse encoding of polar codes with adaptive step sizes for quantum key distribution, Quant. Inf. Process., 21, 10, 349, 2022 · Zbl 1542.81424 · doi:10.1007/s11128-022-03692-6
[15] Zhang, M.; Hai, H.; Feng, Y.; Jiang, XQ, Rate-adaptive reconciliation with polar coding for continuous-variable quantum key distribution, Quant. Inf. Process., 20, 10, 1-17, 2021 · Zbl 1509.81448
[16] Ye, M., Li, H.: A performance comparison of systematic polar codes and non-systematic polar codes. In: 2018 International Conference on Mathematics, Modelling, Simulation and Algorithms (MMSA 2018), pp. 254-256. Atlantis Press (2018)
[17] Nakassis, A., Mink, A.: Polar codes in a qkd environment. In: Quantum Information and Computation XII, vol. 9123, pp. 32-42. SPIE (2014)
[18] Yan, S.; Wang, J.; Fang, J.; Jiang, L.; Wang, X., An improved polar codes-based key reconciliation for practical quantum key distribution, Chinese J. Electronics, 27, 2, 250-255, 2018 · doi:10.1049/cje.2017.07.006
[19] Zhang, M.; Dou, Y.; Huang, Y.; Jiang, XQ; Feng, Y., Improved information reconciliation with systematic polar codes for continuous variable quantum key distribution, Quant. Inf. Process., 20, 10, 327, 2021 · Zbl 1509.81447 · doi:10.1007/s11128-021-03265-z
[20] Arikan, E., Systematic polar coding, IEEE Commun. Lett., 15, 8, 860-862, 2011 · doi:10.1109/LCOMM.2011.061611.110862
[21] Chen, GT; Zhang, Z.; Zhong, C.; Zhang, L., A low complexity encoding algorithm for systematic polar codes, IEEE Commun. Lett., 20, 7, 1277-1280, 2016
[22] Sarkis, G.; Tal, I.; Giard, P.; Vardy, A.; Thibeault, C.; Gross, WJ, Flexible and low-complexity encoding and decoding of systematic polar codes, IEEE Trans. Commun., 64, 7, 2732-2745, 2016 · doi:10.1109/TCOMM.2016.2574996
[23] Sarkis, G.; Giard, P.; Vardy, A.; Thibeault, C.; Gross, WJ, Fast polar decoders: algorithm and implementation, IEEE J. Selected Areas Commun., 32, 5, 946-957, 2014 · doi:10.1109/JSAC.2014.140514
[24] Leverrier, A.; Alléaume, R.; Boutros, J.; Zémor, G.; Grangier, P., Multidimensional reconciliation for a continuous-variable quantum key distribution, Phys. Rev. A, 77, 4, 2008 · doi:10.1103/PhysRevA.77.042325
[25] Leverrier, A.; Grangier, P., Continuous-variable quantum-key-distribution protocols with a non-gaussian modulation, Phys. Rev. A, 83, 4, 2011 · doi:10.1103/PhysRevA.83.042312
[26] Ma, XC; Sun, SH; Jiang, MS; Liang, LM, Local oscillator fluctuation opens a loophole for eve in practical continuous-variable quantum-key-distribution systems, Phys. Rev. A, 88, 2, 2013 · doi:10.1103/PhysRevA.88.022339
[27] Zhang, K., Jiang, X.Q., Feng, Y., Qiu, R., Bai, E.: High efficiency continuous-variable quantum key distribution based on quasi-cyclic ldpc codes. In: 2020 5th International Conference on Communication, Image and Signal Processing (CCISP), pp. 38-42. IEEE (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.