×

Improved polynomial fuzzy modeling and controller with stability analysis for nonlinear dynamical systems. (English) Zbl 1264.93124

Summary: We present an improved model and controller for nonlinear plants using polynomial fuzzy model-based (FMB) systems. To minimize mismatch between the polynomial fuzzy model and nonlinear plant, the suitable parameters of membership functions are determined in a systematic way. Defining an appropriate fitness function and utilizing Taylor series expansion, a genetic algorithm (GA) is used to form the shape of membership functions in polynomial forms, which are afterwards used in fuzzy modeling. To validate the model, a controller based on proposed polynomial fuzzy systems is designed and then applied to both original nonlinear plant and fuzzy model for comparison. Additionally, stability analysis for the proposed polynomial FMB control system is investigated employing Lyapunov theory and a sum of squares (SOS) approach. Moreover, the form of the membership functions is considered in stability analysis. The SOS-based stability conditions are attained using SOSTOOLS. Simulation results are also given to demonstrate the effectiveness of the proposed method.

MSC:

93C42 Fuzzy control/observation systems

Software:

Sostools
Full Text: DOI

References:

[1] G. Feng, “A survey on analysis and design of model-based fuzzy control systems,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 5, pp. 676-697, 2006. · doi:10.1109/TFUZZ.2006.883415
[2] K. Guelton, T. M. Guerra, M. Bernal, T. Bouarar, and N. Manamanni, “Comments on fuzzy control systems design via fuzzy lyapunov functions,” IEEE Transactions on Systems, Man, and Cybernetics Part B, vol. 40, no. 3, pp. 970-972, 2010. · doi:10.1109/TSMCB.2009.2033807
[3] T. H. S. Li and S. H. Tsai, “T-S fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 3, pp. 494-506, 2007. · doi:10.1109/TFUZZ.2006.889964
[4] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985. · Zbl 0576.93021 · doi:10.1109/TSMC.1985.6313399
[5] C. W. Tao, Y. H. Chang, C. W. Chang, W. S. Chan, and J. S. Taur, “Robust and stable hybrid fuzzy control of a pendulum-cart system with particle swarm optimization,” International Journal of Fuzzy Systems, vol. 12, no. 1, pp. 48-58, 2010.
[6] J. S. Chiou and S. H. Tsai, “Stability and stabilization of Takagi-Sugeno fuzzy switched system with time-delay,” Journal of Systems and Control Engineering, vol. 226, no. 5, pp. 615-621, 2012.
[7] M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” Fuzzy Sets and Systems, vol. 28, no. 1, pp. 15-33, 1988. · Zbl 0652.93010 · doi:10.1016/0165-0114(88)90113-3
[8] G. Feng, “A survey on analysis and design of model-based fuzzy control systems,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 5, pp. 676-697, 2006. · doi:10.1109/TFUZZ.2006.883415
[9] J. Adamy and A. Schwung, “Qualitative modeling of dynamical systems employing continuous-time recurrent fuzzy systems,” Fuzzy Sets and Systems, vol. 161, no. 23, pp. 3026-3043, 2010. · Zbl 1206.93061 · doi:10.1016/j.fss.2010.08.004
[10] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis, John Wiley & Sons, 2001.
[11] J. L. Castro, “Fuzzy logic controllers are universal approximators,” IEEE Transactions on Systems, Man and Cybernetics, vol. 25, no. 4, pp. 629-635, 1995. · doi:10.1109/21.370193
[12] H. K. Lam, “Polynomial fuzzy-model-based control systems: stability analysis via piecewise-linear membership functions,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 588-593, 2011. · doi:10.1109/TFUZZ.2011.2118215
[13] A. Sala and C. Ariño, “Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya’s theorem,” Fuzzy Sets and Systems, vol. 158, no. 24, pp. 2671-2686, 2007. · Zbl 1133.93348 · doi:10.1016/j.fss.2007.06.016
[14] H. K. Lam and M. Narimani, “Quadratic-stability analysis of fuzzy-model-based control systems using staircase membership functions,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 1, pp. 125-137, 2010. · doi:10.1109/TFUZZ.2009.2037744
[15] W. J. Chang, C. H. Chang, and C. C. Ku, “Fuzzy controller design for Takagi-Sugeno fuzzy models with multiplicative noises via relaxed non-quadratic stability analysis,” Proceedings of the IME Part I: Journal of Systems and Control Engineering, vol. 224, no. 8, pp. 918-931, 2010. · doi:10.1243/09596518JSCE1035
[16] D. H. Lee, J. B. Park, and Y. H. Joo, “A new fuzzy lyapunov function for relaxed stability condition of continuous-time Takagi-Sugeno fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 4, pp. 785-791, 2011.
[17] H. K. Lam and F. H. Leung, Stability Analysis of Fuzzy-Model-Based Control Systems, Springer, Berlin, Germany, 2011. · Zbl 1220.93002
[18] H. Zhang and X. Xie, “Relaxed stability conditions for continuous-time TS fuzzy-control systems via augmented multi-indexed matrix approach,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 478-492, 2011. · doi:10.1109/TFUZZ.2011.2114887
[19] L. A. Mozelli, R. M. Palhares, and G. S. C. Avellar, “A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems,” Information Sciences, vol. 179, no. 8, pp. 1149-1162, 2009. · Zbl 1156.93355 · doi:10.1016/j.ins.2008.12.002
[20] H. K. Lam, “LMI-based stability analysis for fuzzy-model-based control systems using artificial TS fuzzy model,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 505-513, 2011. · doi:10.1109/TFUZZ.2011.2116027
[21] J. Dong and G. H. Yang, “Control synthesis of T-S fuzzy systems based on a new control scheme,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 323-338, 2011. · doi:10.1109/TFUZZ.2010.2096470
[22] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Systems, vol. 45, no. 2, pp. 135-156, 1992. · Zbl 0758.93042 · doi:10.1016/0165-0114(92)90113-I
[23] C. L. Chen, P. C. Chen, and C. K. Chen, “Analysis and design of fuzzy control system,” Fuzzy Sets and Systems, vol. 57, no. 2, pp. 125-140, 1993. · Zbl 0792.93079 · doi:10.1016/0165-0114(93)90152-8
[24] X. Huang, J. Cao, and Y. Li, “Takagi-Sugeno fuzzy-model-based control of hyperchaotic Chen system with norm-bounded uncertainties,” Proceedings of the IME Part I: Journal of Systems and Control Engineering, vol. 224, no. 3, pp. 223-234, 2010. · doi:10.1243/09596518JSCE836
[25] H. K. Lam and M. Narimani, “Stability analysis and perfomance design for fuzzy-model-based control system under imperfect premise matching,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 949-961, 2009. · doi:10.1109/TFUZZ.2008.928600
[26] H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, “Parameterized linear matrix inequality techniques in fuzzy control system design,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 2, pp. 324-332, 2001. · doi:10.1109/91.919253
[27] X. Liu and Q. Zhang, “New approaches to H\infty controller designs based on fuzzy observers for T-S fuzzy systems via LMI,” Automatica, vol. 39, no. 9, pp. 1571-1582, 2003. · Zbl 1029.93042 · doi:10.1016/S0005-1098(03)00172-9
[28] K. Tanaka, H. Ohtake, and H. O. Wang, “Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach,” IEEE Transactions on Systems, Man, and Cybernetics Part B, vol. 39, no. 2, pp. 561-567, 2009. · doi:10.1109/TSMCB.2008.2006639
[29] Y. H. Chien, W. Y. Wang, Y. G. Leu, and T. T. Lee, “Robust adaptive controller design for a class of uncertain nonlinear systems using online T-S fuzzy-neural modeling approach,” IEEE Transactions on Systems, Man, and Cybernetics Part B, vol. 41, no. 2, pp. 542-552, 2011. · doi:10.1109/TSMCB.2010.2065801
[30] A. Lemos, W. Caminhas, and F. Gomide, “Multivariable gaussian evolving fuzzy modeling system,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 1, pp. 91-104, 2011. · doi:10.1109/TFUZZ.2010.2087381
[31] M. Chadli and H. Karimi, “Robust observer design for unknown inputs Takagi-Sugeno models,” IEEE Transactions on Fuzzy Systems. In press. · Zbl 1264.93123 · doi:10.1109/TFUZZ.2012.2197215
[32] A. Schwung, T. Gußner, and J. Adamy, “Stability analysis of recurrent fuzzy systems: a hybrid system and sos approach,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 3, pp. 423-431, 2011. · doi:10.1109/TFUZZ.2010.2103564
[33] A. Sala and C. Ariño, “Relaxed stability and performance LMI conditions for Takagi-Sugeno fuzzy systems with polynomial constraints on membership function shapes,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 5, pp. 1328-1336, 2008. · doi:10.1109/TFUZZ.2008.926585
[34] M. Narimani and H. K. Lam, “SOS-based stability analysis of polynomial fuzzy-model-based control systems via polynomial membership functions,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 862-871, 2010. · doi:10.1109/TFUZZ.2010.2050890
[35] A. Sala and T. M. Guerra, “Stability analysis of fuzzy systems: membership-shape and polynomial approaches,” in Proceedings of the 17th World Congress, the International Federation of Automatic Control, pp. 5605-5610, Seoul, Republic of Korea, 2008.
[36] C. W. Park and Y. W. Cho, “T-S model based indirect adaptive fuzzy control using online parameter estimation,” IEEE Transactions on Systems, Man, and Cybernetics Part B, vol. 34, no. 6, pp. 2293-2302, 2004. · doi:10.1109/TSMCB.2004.835079
[37] Y. J. Liu, W. Wang, S. C. Tong, and Y. S. Liu, “Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters,” IEEE Transactions on Systems, Man, and Cybernetics Part A, vol. 40, no. 1, pp. 170-184, 2010. · doi:10.1109/TSMCA.2009.2030164
[38] M. Chadli and T. M. Guerra, “LMI solution for robust static output feedback control of Takagi-Sugeno fuzzy models,” IEEE Trans. on Fuzzy Systems, vol. 20, no. 6, 2012.
[39] C. W. Park and M. Park, “Adaptive parameter estimator based on T-S fuzzy models and its applications to indirect adaptive fuzzy control design,” Information Sciences, vol. 159, no. 1-2, pp. 125-139, 2004. · Zbl 1069.93018 · doi:10.1016/j.ins.2003.07.001
[40] Y. W. Cho, C. W. Park, and M. Park, “An indirect model reference adaptive fuzzy control for SISO Takagi-Sugeno model,” Fuzzy Sets and Systems, vol. 131, no. 2, pp. 197-215, 2002. · Zbl 1010.93512 · doi:10.1016/S0165-0114(02)00105-7
[41] Y. W. Cho, C. W. Park, J. H. Kim, and M. Park, “Indirect model reference adaptive fuzzy control of dynamic fuzzy state-space model,” IEE Proceedings, Control Theory and Applications, vol. 148, no. 4, pp. 273-282, 2001.
[42] T. J. Koo, “Stable model reference adaptive fuzzy control of a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 4, pp. 624-636, 2001. · doi:10.1109/91.940973
[43] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, “A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 911-922, 2009. · doi:10.1109/TFUZZ.2008.924341
[44] S. Prajna, A. Papachristodoulou, and F. Wu, “Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach,” in Proc. Asian Control Conf., pp. 157-165, Melbourne, Australia, July 2004.
[45] A. Papachristodoulou and S. Prajna, “A tutorial on sum of squares techniques for systems analysis,” in 2005 American Control Conference, ACC, pp. 2686-2700, Portland, Ore, USA, June 2005. · Zbl 1138.93391
[46] S. P. Boyd, Linear Matrix Inequalities in System and Control Theory, Society for Industrial & Applied, 1994.
[47] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, Version 2.00, California Institute of Technology, Pasadena, Calif, USA, 2004.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.