×

SeAr PC: sensitivity enhanced arbitrary polynomial chaos. (English) Zbl 07917746

Summary: This paper presents a method for performing Uncertainty Quantification in high-dimensional uncertain spaces by combining arbitrary polynomial chaos with a recently proposed scheme for sensitivity enhancement [K. D. Kantarakias and G. Papadakis, J. Comput. Phys. 491, Article ID 112377, 19 p. (2023; Zbl 07771293)]. Including available sensitivity information offers a way to mitigate the curse of dimensionality in Polynomial Chaos Expansions (PCEs). Coupling the sensitivity enhancement to arbitrary Polynomial Chaos allows the formulation to be extended to a wide range of stochastic processes, including multi-modal, fat-tailed, and truncated probability distributions. In so doing, this work addresses two of the barriers to widespread industrial application of PCEs. The method is demonstrated for a number of synthetic test cases, including an uncertainty analysis of a Finite Element structure, determined using Topology Optimisation, with 306 uncertain inputs. We demonstrate that by exploiting sensitivity information, PCEs can feasibly be applied to such problems and through the Sobol sensitivity indices, can allow a designer to easily visualise the spatial distribution of the sensitivities within the structure.

MSC:

68-XX Computer science
62-XX Statistics

Citations:

Zbl 07771293

Software:

top88.m

References:

[1] Zang, C.; Friswell, M. I.; Mottershead, J. E., A review of robust optimal design and its application in dynamics, Comput. Struct., 83, 4, 315-326, 2005
[2] Roache, P. J., Quantification of uncertainty in computational fluid dynamics, Annu. Rev. Fluid Mech., 29, 1, 123-160, 1997
[3] Blatman, G.; Sudret, B., An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probab. Eng. Mech., 25, 2, 183-197, 2010
[4] Wiener, N., The homogeneous chaos, Amer. J. Math., 60, 897-936, 1938 · Zbl 0019.35406
[5] Xiu, D.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 2, 619-644, 2002 · Zbl 1014.65004
[6] Chatzimanolakis, M.; Kantarakias, K. D.; Asouti, V. G.; Giannakoglou, K. C., A painless intrusive polynomial chaos method with RANS-based applications, Comput. Methods Appl. Mech. Engrg., 348, 207-221, 2019 · Zbl 1440.76129
[7] K. Kantarakias, M. Chatzimanolakis, V.G. Asouti, K.C. Giannakoglou, On the development of the 3D Euler equations using intrusive PCE for uncertainty quantification, in: Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, 2017, pp. 588-597.
[8] Perkó, Z.; van der Voort, S. R.; van de Water, S.; Hartman, C. M.H.; Hoogeman, M.; Lathouwers, D., Fast and accurate sensitivity analysis of IMPT treatment plans using polynomial chaos expansion, Phys. Med. Biol., 61, 12, 4646-4664, 2016
[9] Pepper, N.; Gerardo-Giorda, L.; Montomoli, F., Meta-modeling on detailed geography for accurate prediction of invasive alien species dispersal, Sci. Rep., 9, 2019
[10] Kantarakias, K. D.; Shawki, K.; Papadakis, G., Uncertainty quantification of sensitivities of time-average quantities in chaotic systems, Phys. Rev. E, 101, Article 022223 pp., 2020
[11] Kantarakias, K. D.; Papadakis, G., Application of generalized polynomial chaos for quantification of uncertainties of time averages and their sensitivities in chaotic systems, Algorithms, 13, 4, 2020
[12] Kantarakias, K. D.; Shawki, K.; Papadakis, G., Uncertainty quantification of sensitivities of time-average quantities in chaotic systems, Phys. Rev. E, 101, Article 022223 pp., 2020
[13] Kaintura, A.; Dhaene, T.; Spina, D., Review of polynomial chaos-based methods for uncertainty quantification in modern integrated circuits, Electronics, 7, 3, 2018
[14] Jones, B. A.; Doostan, A.; Born, G. H., Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos, J. Guid. Control Dyn., 36, 2, 430-444, 2013
[15] Cohen, A.; Migliorati, G., Optimal weighted least-squares methods, SMAI J. Comput. Math., 3, 181-203, 2017 · Zbl 1416.62177
[16] M. Eldred, J. Burkardt, Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification, in: 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2009, p. 976.
[17] De, S.; Hampton, J.; Maute, K.; Doostan, A., Topology optimization under uncertainty using a stochastic gradient-based approach, Struct. Multidiscip. Optim., 62, 2255-2278, 2020
[18] Ghisu, T.; Shahpar, S., Affordable uncertainty quantification for industrial problems: Application to aero-engine fans, J. Turbomach., 140, 6, 2018, 061005
[19] Keshavarzzadeh, V.; Fernandez, F.; Tortorelli, D. A., Topology optimization under uncertainty via non-intrusive polynomial chaos expansion, Comput. Methods Appl. Mech. Engrg., 318, 120-147, 2017 · Zbl 1439.74281
[20] Chen, S.; Chen, W.; Lee, S., Level set based robust shape and topology optimization under random field uncertainties, Struct. Multidiscip. Optim., 41, 4, 507-524, 2010 · Zbl 1274.74323
[21] Maute, K.; Weickum, G.; Eldred, M., A reduced-order stochastic finite element approach for design optimization under uncertainty, Struct. Saf., 31, 6, 450-459, 2009, Optimization under Uncertainty with Emphasis on Structural Applications
[22] Lazarov, B. S.; Schevenels, M.; Sigmund, O., Topology optimization considering material and geometric uncertainties using stochastic collocation methods, Structural and Multidisciplinary optimization, 46, 4, 597-612, 2012 · Zbl 1274.74360
[23] Wu, J.; Gao, J.; Luo, Z.; Brown, T., Robust topology optimization for structures under interval uncertainty, Adv. Eng. Softw., 99, 36-48, 2016
[24] Conrad, P. R.; Marzouk, Y. M., Adaptive smolyak pseudospectral approximations, 2012, arXiv
[25] M. Eldred, Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design, in: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
[26] Wu, X.; Zhang, W.; Song, S.; Ye, Z., Sparse grid-based polynomial chaos expansion for aerodynamics of an airfoil with uncertainties, Chin. J. Aeronaut., 31, 5, 997-1011, 2018
[27] Lüthen, N.; Marelli, S.; Sudret, B., Sparse polynomial chaos expansions: Literature survey and benchmark, SIAM/ASA Journal on Uncertainty Quantification, 9, 2, 593-649, 2021 · Zbl 1464.65008
[28] Wang, Z.; Ghanem, R., Stochastic modeling and statistical calibration with model error and scarce data, Comput. Methods Appl. Mech. Engrg., 416, Article 116339 pp., 2023 · Zbl 1539.62072
[29] Wan, X.; Karniadakis, G. E., Beyond Wiener-Askey expansions: handling arbitrary pdfs, J. Sci. Comput., 27, 455-464, 2006 · Zbl 1102.65006
[30] Oladyshkin, S.; Nowak, W., Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion, Reliab. Eng. Syst. Saf., 106, 179-190, 2012
[31] Ahlfeld, R.; Belkouchi, B.; Montomoli, F., SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos, J. Comput. Phys., 320, 1-16, 2016 · Zbl 1349.65417
[32] Kantarakias, K. D.; Papadakis, G., Sensitivity-enhanced generalized polynomial chaos for efficient uncertainty quantification, J. Comput. Phys., 491, Article 112377 pp., 2023 · Zbl 07771293
[33] Skamagkis, T.; Papoutsis-Kiachagias, E. M.; Giannakoglou, K. C., CFD-based shape optimization under uncertainties using the adjoint-assisted polynomial chaos expansion and projected derivatives, Comput. & Fluids, 241, Article 105458 pp., 2022 · Zbl 1521.76467
[34] Han, Z.-H.; Görtz, S.; Zimmermann, R., Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function, Aerosp. Sci. Technol., 25, 1, 177-189, 2013
[35] H.S. Chung, J. Alonso, Using gradients to construct cokriging approximation models for high-dimensional design optimization problems, in: 40th AIAA Aerospace Sciences Meeting & Exhibit, 2002, p. 317.
[36] M. Chatzimanolakis, K.-D. Kantarakias, V.G. Asouti, K.C. Giannakoglou, Setting up the Intrusive Polynomial Chaos Method for Uncertainty Quantifcation and Adjoint-based Optimization in Compressible Fluid Flows, in: Proceedings of the Tenth International Conference on Computational Fluid Dynamics, ICCFD10, Barcelona,Spain, 13-16, 2018, pp. 1-12.
[37] Roderick, O.; Anitescu, M.; Fischer, P., Polynomial regression approaches using derivative information for uncertainty quantification, Nucl. Sci. Eng., 164, 2, 122-139, 2010
[38] Guo, L.; Narayan, A.; Zhou, T., A gradient enhanced \(l 1\)-minimization for sparse approximation of polynomial chaos expansions, J. Comput. Phys., 367, 49-64, 2018 · Zbl 1415.65032
[39] Jakeman, J. D.; Eldred, M. S.; Sargsyan, K., Enhancing \(l 1\)-minimization estimates of polynomial chaos expansions using basis selection, J. Comput. Phys., 289, 18-34, 2015 · Zbl 1352.65026
[40] Peng, J.; Hampton, J.; Doostan, A., On polynomial chaos expansion via gradient-enhanced \(l 1\)-minimization, J. Comput. Phys., 310, 440-458, 2016 · Zbl 1349.65538
[41] Lockwood, B.; Mavriplis, D., Gradient-based methods for uncertainty quantification in hypersonic flows, Comput. & Fluids, 85, 27-38, 2013, International Workshop on Future of CFD and Aerospace Sciences · Zbl 1290.76055
[42] Luchini, P.; Bottaro, A., Adjoint equations in stability analysis, Annu. Rev. Fluid Mech., 46, 1, 493-517, 2014 · Zbl 1297.76068
[43] Roderick, O.; Anitescu, M.; Fischer, P., Polynomial regression approaches using derivative information for uncertainty quantification, Nucl. Sci. Eng., 164, 2, 122-139, 2010
[44] Isukapalli, S. S.; Roy, A.; Georgopoulos, P. G., Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: Application to environmental and biological systems, Risk Anal., 20, 5, 591-602, 2000
[45] Peng, J.; Hampton, J.; Doostan, A., On polynomial chaos expansion via gradient-enhanced \(\ell_1\)-minimization, J. Comput. Phys., 310, 440-458, 2016 · Zbl 1349.65538
[46] Guo, L.; Narayan, A.; Zhou, T., A gradient enhanced \(\ell_1\)-minimization for sparse approximation of polynomial chaos expansions, J. Comput. Phys., 367, 49-64, 2018 · Zbl 1415.65032
[47] Cohen, A.; Davenport, M. A.; Leviatan, D., On the stability and accuracy of least squares approximations, Found. Comput. Math., 13, 819-834, 2013 · Zbl 1276.93086
[48] Hampton, J.; Doostan, A., Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies, J. Comput. Phys., 280, 363-386, 2015 · Zbl 1349.94110
[49] Hampton, J.; Doostan, A., Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression, Comput. Methods Appl. Mech. Engrg., 290, 73-97, 2015 · Zbl 1426.62174
[50] Sommariva, A.; Vianello, M., Computing approximate Fekete points by QR factorizations of vandermonde matrices, Comput. Math. Appl., 57, 8, 1324-1336, 2009 · Zbl 1186.65028
[51] Manohar, K.; Brunton, B. W.; Kutz, J. N.; Brunton, S. L., Data-driven sparse sensor placement for reconstruction: Demonstrating the benefits of exploiting known patterns, IEEE Control Syst. Mag., 38, 3, 63-86, 2018 · Zbl 1477.93128
[52] Nouy, A., Identification of multi-modal random variables through mixtures of polynomial chaos expansions, Comptes Rendus Mécanique, 338, 12, 698-703, 2010 · Zbl 1221.62162
[53] Pepper, N.; Montomoli, F.; Sharma, S., Identification of missing input distributions with an inverse multi-modal polynomial chaos approach based on scarce data, Probab. Eng. Mech., 65, Article 103138 pp., 2021
[54] Saltelli, A.; Sobol, I. M., About the use of rank transformation in sensitivity analysis of model output, Reliab. Eng. Syst. Saf., 50, 3, 225-239, 1995
[55] Sigmund, O., A 99 line topology optimization code written in matlab, Struct. Multidiscip. Optim., 21, 2, 120-127, 2001
[56] Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. S.; Sigmund, O., Efficient topology optimization in MATLAB using 88 lines of code, Struct. Multidiscip. Optim., 43, 1, 1-16, 2011 · Zbl 1274.74310
[57] Crestaux, T.; Le Maıtre, O.; Martinez, J.-M., Polynomial chaos expansion for sensitivity analysis, Reliab. Eng. Syst. Saf., 94, 7, 1161-1172, 2009
[58] Novák, L.; Sharma, H.; Shields, M. D., Physics-informed polynomial chaos expansions, J. Comput. Phys., 506, Article 112926 pp., 2024 · Zbl 07843829
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.