×

Transience after disturbance: obligate species recovery dynamics depend on disturbance duration. (English) Zbl 1381.92086

Summary: After a disturbance event, population recovery becomes an important species response that drives ecosystem dynamics. Yet, it is unclear how interspecific interactions impact species recovery from a disturbance and which role the disturbance duration (pulse or press) plays. Here, we analytically derive conditions that govern the transient recovery dynamics from disturbance of a host and its obligately dependent partner in a two-species metapopulation model. We find that, after disturbance, species recovery dynamics depend on the species’ role (i.e., host or obligately dependent species) as well as the duration of disturbance. Host recovery starts immediately after the disturbance. In contrast, for obligate species, recovery depends on disturbance duration. After press disturbance, which allows dynamics to equilibrate during disturbance, obligate species immediately start to recover. Yet, after pulse disturbance, obligate species continue declining although their hosts have already begun to increase. Effectively, obligate species recovery is delayed until a necessary host threshold occupancy is reached. Obligates’ delayed recovery arises solely from interspecific interactions independent of dispersal limitations, which contests previous explanations. Delayed recovery exerts a two-fold negative effect, because populations continue declining to even smaller population sizes and the phase of increased risk from demographic stochastic extinction in small populations is prolonged. We argue that delayed recovery and its determinants – species interactions and disturbance duration – have to be considered in biodiversity management.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
Full Text: DOI

References:

[1] Almeida-Neto, M.; Prado, P.; Lewinsohn, T., Phytophagous insect fauna tracks host plant responses to exotic grass invasion, Oecologia, 165, 4, 1051-1062 (2011)
[2] Anderson, R.; Jackson, H.; May, R.; Smith, A., Population dynamics of fox rabies in Europe, Nature, 289, 765-771 (1981)
[3] Bascompte, J.; Solé, R., Habitat fragmentation and extinction thresholds in spatially explicit models, J. Anim. Ecol., 65, 4, 465-473 (1996)
[4] Bascompte, J.; Solé, R. V., Effects of habitat destruction in a prey-predator metapopulation model, J. Theoret. Biol., 195, 3, 383-393 (1998)
[5] Bender, E. A.; Case, T. J.; Gilpin, M. E., Perturbation experiments in community ecology: Theory and practice, Ecology, 65, 1, 1-13 (1984)
[6] Bengtsson, J., Interspecific competition in metapopulations, Biol. J. Linnean Soc., 42, 1-2, 219-237 (1991)
[7] Berger, J., Model of rabies control, (Mathematical Models in Medicine (1976), Springer), 74-88
[8] Carter, S. P.; Delahay, R. J.; Smith, G. C.; Macdonald, D. W.; Riordan, P.; Etherington, T. R.; Pimley, E. R.; Walker, N. J.; Cheeseman, C. L., Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: an analysis of a critical problem in applied ecology, Proc. R. Soc. Lond. Biol., 274, 1626, 2769-2777 (2007)
[9] Casagrandi, R.; Gatto, M., A mesoscale approach to extinction risk in fragmented habitats, Nature, 400, 6744, 560-562 (1999)
[10] Casagrandi, R.; Gatto, M., Habitat destruction, environmental catastrophes, and metapopulation extinction, Theor. Popul. Biol., 61, 2, 127-140 (2002) · Zbl 1037.92037
[11] Catorci, A.; Tardella, F. M.; Cesaretti, S.; Bertellotti, M.; Santolini, R., The interplay among grazing history, plant-plant spatial interactions and species traits affects vegetation recovery processes in Patagonian steppe, Community Ecol., 13, 253-263 (2012)
[12] Caughley, G., Directions in conservation biology, J. Anim. Ecol., 63, 215-244 (1994)
[13] Chesson, P., Mechanisms of maintenance of species diversity, Annu. Rev. Ecol. Syst., 31, 1, 343-366 (2000)
[14] Dakos, V.; Kefi, S.; Rietkerk, M.; van Nes, E. H.; Scheffer, M., Slowing down in spatially patterned ecosystems at the brink of collapse, Am. Nat., 177, E153-E166 (2011)
[15] Deyoung, B.; Barange, M.; Beaugrand, G.; Harris, R.; Perry, R. I.; Scheffer, M.; Werner, F., Regime shifts in marine ecosystems: detection, prediction and management, Trends Ecol. Evol., 23, 402-409 (2008)
[16] Dislich, C.; Huth, A., Modelling the impact of shallow landslides on forest structure in tropical montane forests, Ecol. Model., 239, 40-53 (2012)
[17] Dos Santos, F. A.S.; Costa, M. I.S., A correct formulation for a spatially implicit predator-prey metacommunity model, Math. Biosci., 223, 2, 79-82 (2010) · Zbl 1183.92080
[18] Ebenman, B.; Jonsson, T., Using community viability analysis to identify fragile systems and keystone species, Trends Ecol. Evol., 20, 10, 568-575 (2005)
[19] Eggers, S. L.; Eriksson, B. K.; Matthiessen, B., A heat wave and dispersal cause dominance shift and decrease biomass in experimental metacommunities, Oikos, 121, 721-733 (2012)
[20] Eisinger, D.; Thulke, H. H., Spatial pattern formation facilitates eradication of infectious diseases, J. Appl. Ecol., 45, 2, 415-423 (2008)
[21] Eklöf, A.; Kaneryd, L.; Münger, P., Climate change in metacommunities: dispersal gives double-sided effects on persistence, Phil. Trans. R. Soc. B, 367, 1605, 2945-2954 (2012)
[22] Escolar, C.; Martínez, I.; Bowker, M. A.; Maestre, F. T., Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning, Phil. Trans. R. Soc. B, 367, 3087-3099 (2012)
[23] Estes, J. A.; Terborgh, J.; Brashares, J. S.; Power, M. E.; Berger, J.; Bond, W. J.; Carpenter, S. R.; Essington, T. E.; Holt, R. D.; Jackson, J. B.C.; Marquis, R. J.; Oksanen, L.; Oksanen, T.; Paine, R. T.; Pikitch, E. K.; Ripple, W. J.; Sandin, S. A.; Scheffer, M.; Schoener, T. W.; Shurin, J. B.; Sinclair, A. R.E.; Soul, M. E.; Virtanen, R.; Wardle, D. A., Trophic downgrading of planet earth, Science, 333, 301-306 (2011)
[24] Fahrig, L., Effect of habitat fragmentation on the extinction threshold: A synthesis, Ecol. Appl., 12, 2, 346-353 (2002)
[25] Fearneyhough, M.; Wilson, P.; Clark, K.; Smith, D.; Johnston, D.; Hicks, B.; Moore, G., Results of an oral rabies vaccination program for coyotes, J. Am. Vet. Med. Assoc., 212, 4, 498-502 (1998)
[26] Foit, K.; Chatzinotas, A.; Liess, M., Short-term disturbance of a grazer has long-term effects on bacterial communities - Relevance of trophic interactions for recovery from pesticide effects, Aquat. Toxicol., 99, 205-211 (2010)
[27] Gouhier, T. C.; Guichard, F., Local disturbance cycles and the maintenance of heterogeneity across scales in marine metapopulations, Ecology, 88, 647-657 (2007)
[28] Grimm, V.; Lorek, H.; Finke, J.; Koester, F.; Malachinski, M.; Sonnenschein, M.; Moilanen, A.; Storch, I.; Singer, A.; Wissel, C., META-X: generic software for metapopulation viability analysis, Biodivers. Conserv., 13, 1, 165-188 (2004)
[29] Hanski, I., Metapopulation Ecology, 324 (1999), Oxford University Press: Oxford University Press Oxford
[30] Heesterbeek, J., A Brief History of \(R_0\) and a Recipe for its Calculation, Acta Biotheor., 50, 189-204 (2002)
[31] Hernández-Suárez, C. M.; Marquet, P. A.; Velasco-Hernández, J. X., Threshold parameters and metapopulation persistence, Bull. Math. Biol., 61, 341-353 (1999) · Zbl 1323.92206
[32] Hoffmann, B. D.; Andersen, A. N., Responses of ants to disturbance in Australia, with particular reference to functional groups, Austral Ecol., 28, 4, 444-464 (2003)
[33] Holt, R. D., From metapopulation dynamics to community structure: some consequences of spatial heterogeneity, (Hanski, I.; Gilpin, M., Metapopulation Biology: Ecology, Genetics, and Evolution (1997), Academic Press, Inc.: Academic Press, Inc. San Diego), 149-164 · Zbl 0913.92025
[34] Holyoak, M.; Lawler, S.; Crowley, P., Predicting extinction: Progress with an individual-based model of protozoan predators and prey, Ecology, 81, 12, 3312-3329 (2000)
[35] Johst, K.; Brandl, R.; Eber, S., Metapopulation persistence in dynamic landscapes: the role of dispersal distance, Oikos, 98, 2, 263-270 (2002)
[36] Johst, K.; Gutt, J.; Wissel, C.; Grimm, V., Diversity and disturbances in the Antarctic megabenthos: feasible versus theoretical disturbance ranges, Ecosystems, 9, 7, 1145-1155 (2006)
[37] Kaminski, L. A., Polyphagy and Obligate Myrmecophily in the Butterfly Hallonympha paucipuncta (Lepidoptera: Riodinidae) in the Neotropical Cerrado Savanna, Biotropica, 40, 3, 390-394 (2008)
[38] Krauss, J.; Steffan-Dewenter, I.; Müller, C. B.; Tscharntke, T., Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly, Ecography, 28, 4, 465-474 (2005)
[39] Lande, R., Risks of population extinction from demographic and environmental stochasticity and random catastrophes, Am. Nat., 911-927 (1993)
[40] Letnic, M.; Tamayo, B.; Dickman, C. R., The responses of mammals to La Nina (El Nino Southern Oscillation)-associated rainfall, predation, and wildfire in central Australia, J. Mammal., 86, 4, 689-703 (2005)
[41] Levins, R., Some demographic and genetic consequences of environmental heterogeneity for biological control, Bull. Entomol. Soc. Amer., 15, 3, 237-240 (1969)
[42] Linder, H. P.; Bykova, O.; Dyke, J.; Etienne, R. S.; Hickler, T.; Kühn, I.; Marion, G.; Ohlemüller, R.; Schymanski, J.; Singer, A., Biotic modifiers, environmental modulation and species distribution models, J. Biogeography, 39, 2179-2190 (2012)
[43] May, R. M., The effect of spatial scale on ecological questions and answers, (Edwards, P. J.; May, R. M.; Webb, N. R., Large-Scale Ecology and Conservation Biology (1994), Blackwell Scientific Publications, Oxford, UK), 1
[44] Mills, N., Factors influencing top-down control of insect pest populations in biological control systems, Basic Appl. Ecol., 2, 4, 323-332 (2001)
[45] Moilanen, A.; Hanski, I., Metapopulation dynamics: effects of habitat quality and landscape structure, Ecology, 79, 7, 2503-2515 (1998)
[46] Murphy, G. E.P.; Romanuk, T. N., A Meta-analysis of community response predictability to anthropogenic disturbances, Am. Nat., 180, 316-327 (2012)
[47] Myers, R. A.; Worm, B., Extinction, survival or recovery of large predatory fishes, Phil. Trans. R. Soc. B, 360, 1453, 13-20 (2005)
[48] Nee, S.; May, R. M.; Hassel, M. P., Two-species metapopulation models, (Hanski, I.; Gilpin, M., Metapopulation Biology: Ecology, Genetics, and Evolution (1997), Academic Press, Inc.: Academic Press, Inc. San Diego), 123-147
[49] Phillips, B. L.; Brown, G. P.; Shine, R., Life-history evolution in range-shifting populations, Ecology, 91, 1617-1627 (2010)
[50] Phillips, B. L.; Kelehear, C.; Pizzatto, L.; Brown, G. P.; Barton, D.; Shine, R., Parasites and pathogens lag behind their host during periods of host range advance, Ecology, 91, 872-881 (2010)
[51] Prakash, S.; De Roos, A. M., Habitat destruction in a simple predator-prey patch model: how predators enhance prey persistence and abundance, Theor. Popul. Biol., 62, 231-249 (2002) · Zbl 1101.92320
[52] Rice, S.; Stoffel, M.; Turowski, J. M.; Wolf, A., Disturbance regimes at the interface of geomorphology and ecology, Earth Surf. Process. Landf., 37, 1678-1682 (2012)
[53] Rosenheim, J. A., Higher-order predators and the regulation of insect herbivore populations, Annu. Rev. Entomol., 43, 1, 421-447 (1998)
[54] Scheffer, M.; Carpenter, S.; Foley, J. A.; Folke, C.; Walker, B., Catastrophic shifts in ecosystems, Nature, 413, 591-596 (2001)
[55] Scheffer, M.; Nes, E.; Holmgren, M.; Hughes, T., Pulse-driven loss of top-down control: the critical-rate hypothesis, Ecosystems, 11, 2, 226-237 (2008)
[56] Schiel, D. R.; Lilley, S. A., Impacts and negative feedbacks in community recovery over eight years following removal of habitat-forming macroalgae, J. Exp. Mar. Biol. Ecol., 407, 108-115 (2011)
[57] Schönrogge, K.; Wardlaw, J.; Peters, A.; Everett, S.; Thomas, J.; Elmes, G., Changes in chemical signature and host specificity from larval retrieval to full social integration in the myrmecophilous butterfly maculinea rebeli, J. Chem. Ecol., 30, 1, 91-107 (2004)
[58] Seekell, D.; Cline, T.; Carpenter, S.; Pace, M., Evidence of alternate attractors from a whole-ecosystem regime shift experiment, Theor. Ecol., 6, 3, 385-394 (2013)
[59] Singer, A.; Frank, K., Viability of cyclic populations, Ecology, 97, 11, 3143-3153 (2016)
[60] Singer, A.; Smith, G. C., Emergency rabies control in a community of two high-density hosts, BMC Vet. Res., 8, 79 (2012)
[61] Singer, A.; Travis, J. M.J.; Johst, K., Interspecific interactions affect species and community responses to climate shifts, Oikos, 122, 358-366 (2013)
[62] Smith, S.; Read, D., Mycorrhizal Symbiosis, 605 (1997), Academic Press, California, USA
[63] Snyder, R., Transient dynamics in altered disturbance regimes: recovery may start quickly, then slow, Theor. Ecol., 2, 2, 79-87 (2009)
[64] Solomon, M. E., The natural control of animal populations, J. Anim. Ecol., 18, 1-35 (1949)
[65] Taylor, A. D.; Service, U. S.D. A.F.; Forest, S.; Station, E.; Highway, S., Studying metapopulation effects in predator-prey systems, Biol. J. Linnean Soc., 42, 305-323 (1991)
[66] Ummenhofer, C. C.; England, M. H.; McIntosh, P. C.; Meyers, G. A.; Pook, M. J.; Risbey, J. S.; Gupta, A. S.; Taschetto, A. S., What causes southeast Australia’s worst droughts?, Geophys. Res. Lett., 36, 4 (2009)
[67] Watts, C. H.; Didham, R. K., Rapid recovery of an insect-plant interaction following habitat loss and experimental wetland restoration, Oecologia, 148, 1, 61-69 (2006)
[68] Yedid, G.; Ofria, C. A.; Lenski, R. E., Selective press extinctions, but not random pulse extinctions, cause delayed ecological recovery in communities of digital organisms, Am. Nat., 173, E139-E154 (2009)
[69] Zarnetske, P. L.; Skelly, D. K.; Urban, M. C., Biotic multipliers of climate change, Science, 336, 1516-1518 (2012)
[70] Zinck, R.; Johst, K.; Grimm, V., Wildfire, landscape diversity and the Drossel-Schwabl model, Ecol. Model., 221, 1, 98-105 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.