×

Quantum correlations and limit cycles in the driven-dissipative Heisenberg lattice. (English) Zbl 1543.81227

Summary: Driven-dissipative quantum many-body systems have attracted increasing interest in recent years as they lead to novel classes of quantum many-body phenomena. In particular, mean-field calculations predict limit cycle phases, slow oscillations instead of stationary states, in the long-time limit for a number of driven-dissipative quantum many-body systems. Using a cluster mean-field and a self-consistent Mori projector approach, we explore the persistence of such limit cycles as short range quantum correlations are taken into account in a driven-dissipative Heisenberg model.

MSC:

81V70 Many-body theory; quantum Hall effect
82B10 Quantum equilibrium statistical mechanics (general)
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

References:

[1] Micnas R, Ranninger J and Robaszkiewicz S 1990 Superconductivity in narrow-band systems with local nonretarded attractive interactions Rev. Mod. Phys.62 113-71 · doi:10.1103/RevModPhys.62.113
[2] Qi X-L and Zhang S-C 2011 Topological insulators and superconductors Rev. Mod. Phys.83 1057-110 · doi:10.1103/RevModPhys.83.1057
[3] Hartmann M J 2016 Quantum simulation with interacting photons J. Opt.18 104005 · doi:10.1088/2040-8978/18/10/104005
[4] Noh C and Angelakis D G 2017 Quantum simulations and many-body physics with light Rep. Prog. Phys.80 016401 · doi:10.1088/0034-4885/80/1/016401
[5] Sieberer L M, Buchhold M and Diehl S 2016 Keldysh field theory for driven open quantum systems Rep. Prog. Phys.79 096001 · doi:10.1088/0034-4885/79/9/096001
[6] Le Boité A, Orso G and Ciuti C 2013 Steady-state phases and tunneling-induced instabilities in the driven dissipative Bose-Hubbard model Phys. Rev. Lett.110 233601 · doi:10.1103/PhysRevLett.110.233601
[7] Fitzpatrick M, Sundaresan N M, Li A C Y, Koch J and Houck A A 2017 Observation of a dissipative phase transition in a one-dimensional circuit QED lattice Phys. Rev. X 7 011016 · doi:10.1103/PhysRevX.7.011016
[8] Hartmann M J 2010 Polariton crystallization in driven arrays of lossy nonlinear resonators Phys. Rev. Lett.104 113601 · doi:10.1103/PhysRevLett.104.113601
[9] Leib M and Hartmann M J 2014 Synchronized switching in a Josephson junction crystal Phys. Rev. Lett.112 223603 · doi:10.1103/PhysRevLett.112.223603
[10] Ludwig M and Marquardt F 2013 Quantum many-body dynamics in optomechanical arrays Phys. Rev. Lett.111 073603 · doi:10.1103/PhysRevLett.111.073603
[11] Lee T E, Gopalakrishnan S and Lukin M D 2013 Unconventional magnetism via optical pumping of interacting spin systems Phys. Rev. Lett.110 257204 · doi:10.1103/PhysRevLett.110.257204
[12] Chan C-K, Lee T E and Gopalakrishnan S 2015 Limit-cycle phase in driven-dissipative spin systems Phys. Rev. A 91 051601 · doi:10.1103/PhysRevA.91.051601
[13] Lee T E, Häffner H and Cross M C 2011 Antiferromagnetic phase transition in a nonequilibrium lattice of Rydberg atoms Phys. Rev. A 84 031402 · doi:10.1103/PhysRevA.84.031402
[14] Qian J, Dong G, Zhou L and Zhang W 2012 Phase diagram of Rydberg atoms in a nonequilibrium optical lattice Phys. Rev. A 85 065401 · doi:10.1103/PhysRevA.85.065401
[15] Jin J, Rossini D, Fazio R, Leib M and Hartmann M J 2013 Photon solid phases in driven arrays of nonlinearly coupled cavities Phys. Rev. Lett.110 163605 · doi:10.1103/PhysRevLett.110.163605
[16] Jin J, Rossini D, Leib M, Hartmann M J and Fazio R 2014 Steady-state phase diagram of a driven QED-cavity array with cross-Kerr nonlinearities Phys. Rev. A 90 023827 · doi:10.1103/PhysRevA.90.023827
[17] Heinrich G, Ludwig M, Qian J, Kubala B and Marquardt F 2011 Collective dynamics in optomechanical arrays Phys. Rev. Lett.107 043603 · doi:10.1103/PhysRevLett.107.043603
[18] Navarrete-Benlloch C, Weiss T, Walter S and de Valcárcel G J 2017 General linearized theory of quantum fluctuations around arbitrary limit cycles Phys. Rev. Lett.119 133601 · doi:10.1103/PhysRevLett.119.133601
[19] Ferrier-Barbut I, Kadau H, Schmitt M, Wenzel M and Pfau T 2016 Observation of quantum droplets in a strongly dipolar Bose gas Phys. Rev. Lett.116 215301 · doi:10.1103/PhysRevLett.116.215301
[20] Degenfeld-Schonburg P and Hartmann M J 2014 Self-consistent projection operator theory for quantum many-body systems Phys. Rev. B 89 245108 · doi:10.1103/PhysRevB.89.245108
[21] Jin J, Biella A, Viyuela O, Mazza L, Keeling J, Fazio R and Rossini D 2016 Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems Phys. Rev. X 6 031011 · doi:10.1103/PhysRevX.6.031011
[22] del Valle E and Hartmann M J 2013 Correlator expansion approach to stationary states of weakly coupled cavity arrays J. Phys. B: At. Mol. Opt. Phys.46 224023 · doi:10.1088/0953-4075/46/22/224023
[23] Degenfeld-Schonburg P, Navarrete-Benlloch C and Hartmann M J 2015 Self-consistent projection operator theory in nonlinear quantum optical systems: a case study on degenerate optical parametric oscillators Phys. Rev. A 91 053850 · doi:10.1103/PhysRevA.91.053850
[24] Degenfeld-Schonburg P, Abdi M, Hartmann M J and Navarrete-Benlloch C 2016 Degenerate optomechanical parametric oscillators: cooling in the vicinity of a critical point Phys. Rev. A 93 023819 · doi:10.1103/PhysRevA.93.023819
[25] Li A C, Petruccione F and Koch J 2014 Perturbative approach to Markovian open quantum systems Sci. Rep.4 4887 · doi:10.1038/srep04887
[26] Iemini F, Russomanno A, Keeling J, Schirò M, Dalmonte M and Fazio R 2017 Boundary time crystals arXiv:1708.05014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.