×

Projective objects in the category of pointwise finite dimensional representations of an interval finite quiver. (English) Zbl 1429.16005

Summary: For an interval finite quiver \(Q\), we introduce a class of flat representations. We classify the indecomposable projective objects in the category \(\mathrm{rep}(Q)\) of pointwise finite dimensional representations. We show that an object in \(\mathrm{rep}(Q)\) is projective if and only if it is a direct sum of countably generated flat representations.

MSC:

16D40 Free, projective, and flat modules and ideals in associative algebras
18A30 Limits and colimits (products, sums, directed limits, pushouts, fiber products, equalizers, kernels, ends and coends, etc.)
16G20 Representations of quivers and partially ordered sets

References:

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Grad. Texts in Math. 13, Springer, New York, 1974,; Anderson, F. W.; Fuller, K. R., Rings and Categories of Modules (1974) · Zbl 0301.16001
[2] L. Angeleri Hügel and J. A. de la Peña, Locally finitely generated modules over rings with enough idempotents, J. Algebra Appl. 8 (2009), no. 6, 885-901.; Angeleri Hügel, L.; de la Peña, J. A., Locally finitely generated modules over rings with enough idempotents, J. Algebra Appl., 8, 6, 885-901 (2009) · Zbl 1236.16004
[3] R. Bautista and S. Liu, The bounded derived categories of an algebra with radical squared zero, J. Algebra 482 (2017), 303-345.; Bautista, R.; Liu, S., The bounded derived categories of an algebra with radical squared zero, J. Algebra, 482, 303-345 (2017) · Zbl 1405.16029
[4] R. Bautista, S. Liu and C. Paquette, Representation theory of strongly locally finite quivers, Proc. Lond. Math. Soc. (3) 106 (2013), no. 1, 97-162.; Bautista, R.; Liu, S.; Paquette, C., Representation theory of strongly locally finite quivers, Proc. Lond. Math. Soc. (3), 106, 1, 97-162 (2013) · Zbl 1284.16012
[5] K. Bongartz and P. Gabriel, Covering spaces in representation-theory, Invent. Math. 65 (1981/82), no. 3, 331-378.; Bongartz, K.; Gabriel, P., Covering spaces in representation-theory, Invent. Math., 65, 3, 331-378 (198182) · Zbl 0482.16026
[6] X.-W. Chen, Irreducible representations of Leavitt path algebras, Forum Math. 27 (2015), no. 1, 549-574.; Chen, X.-W., Irreducible representations of Leavitt path algebras, Forum Math., 27, 1, 549-574 (2015) · Zbl 1332.16006
[7] V. Drinfeld, Infinite-dimensional vector bundles in algebraic geometry: An introduction, The Unity of Mathematics, Progr. Math. 244, Birkhäuser, Boston (2006), 263-304.; Drinfeld, V., Infinite-dimensional vector bundles in algebraic geometry: An introduction, The Unity of Mathematics, 263-304 (2006) · Zbl 1108.14012
[8] P. Gabriel, The universal cover of a representation-finite algebra, Representations of Algebras (Puebla 1980), Lecture Notes in Math. 903, Springer, Berlin (1981), 68-105.; Gabriel, P., The universal cover of a representation-finite algebra, Representations of Algebras, 68-105 (1981) · Zbl 0481.16008
[9] P. Gabriel and A. V. Roĭter, Representations of finite-dimensional algebras, Algebra. VIII, Encyclopaedia Math. Sci. 73, Springer, Berlin (1992), 1-177.; Gabriel, P.; Roĭter, A. V., Representations of finite-dimensional algebras, Algebra. VIII, 1-177 (1992) · Zbl 0839.16001
[10] V. E. Govorov, On flat modules, Sibirsk. Mat. Ž. 6 (1965), 300-304.; Govorov, V. E., On flat modules, Sibirsk. Mat. Ž., 6, 300-304 (1965) · Zbl 0156.27104
[11] P. Jiao, Decomposition of pointwise finite length modules over an essentially small category, preprint (2018), .; Jiao, P., Decomposition of pointwise finite length modules over an essentially small category, Preprint (2018)
[12] I. Kaplansky, Projective modules, Ann. of Math (2) 68 (1958), 372-377.; Kaplansky, I., Projective modules, Ann. of Math (2), 68, 372-377 (1958) · Zbl 0083.25802
[13] D. Lazard, Sur les modules plats, C. R. Acad. Sci. Paris 258 (1964), 6313-6316.; Lazard, D., Sur les modules plats, C. R. Acad. Sci. Paris, 258, 6313-6316 (1964) · Zbl 0135.07604
[14] H. Lenzing and R. Zuazua, Auslander-Reiten duality for abelian categories, Bol. Soc. Mat. Mexicana (3) 10 (2004), no. 2, 169-177.; Lenzing, H.; Zuazua, R., Auslander-Reiten duality for abelian categories, Bol. Soc. Mat. Mexicana (3), 10, 2, 169-177 (2004) · Zbl 1102.16011
[15] U. Oberst and H. Röhrl, Flat and coherent functors, J. Algebra 14 (1970), 91-105.; Oberst, U.; Röhrl, H., Flat and coherent functors, J. Algebra, 14, 91-105 (1970) · Zbl 0186.03003
[16] M. Raynaud and L. Gruson, Critères de platitude et de projectivité. Techniques de “platification“ d’un module, Invent. Math. 13 (1971), 1-89. <pub-id pub-id-type=”doi“>10.1007/BF01390094; <element-citation publication-type=”journal“> Raynaud, M.Gruson, L.Critères de platitude et de projectivité. Techniques de “platification” d’un moduleInvent. Math.131971189 · Zbl 0227.14010
[17] J. J. Rotman, An introduction to Homological Algebra, 2nd ed., Universitext, Springer, New York, 2009.; Rotman, J. J., An introduction to Homological Algebra (2009) · Zbl 1157.18001
[18] S. P. Smith, The space of Penrose tilings and the noncommutative curve with homogeneous coordinate ring k\langle x,y\rangle/(y^2), J. Noncommut. Geom. 8 (2014), no. 2, 541-586.; Smith, S. P., The space of Penrose tilings and the noncommutative curve with homogeneous coordinate ring k\langle x,y\rangle/(y^2), J. Noncommut. Geom., 8, 2, 541-586 (2014) · Zbl 1328.14007
[19] C. A. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math. 38, Cambridge University, Cambridge, 1994.; Weibel, C. A., An Introduction to Homological Algebra (1994) · Zbl 0797.18001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.