×

Kernels of Hankel operators on the Hardy space over the bidisk. (English) Zbl 1423.47007

Summary: For a Hankel operator \(H_\xi\), \(\xi\in L^\infty(\mathbb{T}^2)\), on the Hardy space \(H^2\) over the bidisk, \(\operatorname{ker}H_{\bar{\xi}}\) is an invariant subspace of \(H^2\). It is known that there is an invariant subspace \(M\) such that \(\operatorname{ker}H_{\bar{\xi}}\neq M\) for every \(\xi\in L^\infty\). Let \(\eta\in H^\infty\) be a nonconstant function. It is proved that, if \(\eta\bot\phi(z)H^2+\psi(w)H^2\) for Blaschke products \(\phi(z)\) and \(\psi(w)\), then \(\operatorname{ker}H_{\bar{\eta}}=\theta_1(z)\theta_2(w)H^2\) for some subproducts \(\theta_1(z)\) and \(\theta_2(w)\) of \(\phi(z)\) and \(\psi(w)\), respectively. If \(\eta\) is \(\ast\)-cyclic, then it is easy to see that \(\operatorname{ker}H_{\bar{\eta}}=\{0\}\). We give some examples \(\eta\) satisfying \(\operatorname{ker}H_{\bar{\eta}}=\{0\}\) but \(\eta\) is not \(\ast\)-cyclic.

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
47A15 Invariant subspaces of linear operators
32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables

References:

[1] P. Ahern and D. Clark, Invariant subspaces and analytic continuation in several variables, J. Math. Mech. 19 (1970), 963-969. · Zbl 0211.10203
[2] X. Chen and K. Guo, Analytic Hilbert Modules, Chapman & Hall/CRC, Boca Raton, 2003. · Zbl 1048.46005
[3] Y. Chen, K. J. Izuchi, and Y. J. Lee, Kernels of Toeplitz operators on the Hardy space over the bidisk, J. Funct. Anal. 272 (2017), no. 9, 3869-3903. · Zbl 06695418 · doi:10.1016/j.jfa.2017.01.002
[4] R. G. Douglas, Banach Algebra Techniques in Operator Theory, 2nd ed., Grad. Texts in Math. 179, Springer, New York, 1998. · Zbl 0920.47001
[5] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Grad. Texts in Math. 199, Springer, New York, 2000. · Zbl 0955.32003
[6] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, 1962. · Zbl 0117.34001
[7] K. J. Izuchi and R. Yang, Strictly contractive compression on backward shift invariant subspaces over the torus, Acta Sci. Math. (Szeged) 70 (2004), no. 1-2, 147-165. · Zbl 1062.47017
[8] K. J. Izuchi and R. Yang, \(N_{\varphi }\)-type quotient modules on the torus, New York J. Math. 14 (2008), 431-457. · Zbl 1175.47007
[9] N. K. Nikol’skii, Treatise on the Shift Operator, with an appendix by S. V. Khruschev and V. V. Peller, Grundlehren Math. Wiss. 273, Springer, New York, 1986. · Zbl 0587.47036
[10] J. Partington, An Introduction to Hankel Operators, London Math Soc. Stud. Text 13, Cambridge Univ. Press, Cambridge, 1988. · Zbl 0668.47022
[11] S. Power, Hankel Operators on Hilbert Space, Pitman, Boston, 1982. · Zbl 0489.47011
[12] W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969. · Zbl 0177.34101
[13] R. Yang, Operator theory in the Hardy space over the bidisk (III), J. Funct. Anal. 186 (2001), no. 2, 521-545. · Zbl 1049.47501 · doi:10.1006/jfan.2001.3799
[14] K. Zhu, Maximal inner spaces and Hankel operators on the Bergman space, Integral Equations Operator Theory 31 (1998), no. 3, 371-387. · Zbl 0917.47006 · doi:10.1007/BF01195126
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.