×

On thermodynamically compatible finite volume methods and path-conservative ADER discontinuous Galerkin schemes for turbulent shallow water flows. (English) Zbl 1501.65047

The authors introduce a new reformulation of the first order hyperbolic model for unsteady turbulent shallow water flows introduced and studied in some previous works, e.g. [S. Gavrilyuk et al., J. Comput. Phys. 366, 252–280 (2018; Zbl 1406.65068)]. The main key of the model reformulation proposed is the decomposition of the specific Reynolds stress tensor \({\textbf{P}}\) at the aid of a new object \({\textbf{Q}}\) such that \({\textbf{P}}={\textbf{Q}}{\textbf{Q}}^T\). This yields \(\mathrm{tr} {\textbf{P}}\geq 0\). The mathematical model is interesting since one important subset of evolution equations is nonconservative and the nonconservative products also act across genuinely nonlinear fields. A thermodynamically compatible viscous extension of the model that is necessary to define a proper vanishing viscosity limit of the inviscid model and that is absolutely fundamental for the subsequent construction of a thermodynamically compatible numerical scheme is considered. Two families of numerical methods are introduced. The first scheme is a provably thermodynamically compatible semi-discrete finite volume scheme that makes direct use of the Godunov form of the equations and can therefore be called a discrete Godunov formalism. The new method mimics the underlying continuous viscous system exactly at the semi-discrete level and is thus consistent with the conservation of total energy, with the entropy inequality and with the vanishing viscosity limit of the model. The second scheme is a high order path-conservative ADER discontinuous Galerkin finite element method with a posteriori subcell finite volume limiter that can be applied to the inviscid as well as to the viscous form of the model. Both schemes use path integrals to define the jump terms at the element interfaces. Some different numerical methods are applied to the inviscid system and are compared with each other and with the scheme proposed in [the third author et al., J. Comput. Phys. 366, 252-280 (2018; Zbl 1406.65068)] on the example of three Riemann problems. An excelent agreement between all different methods was observed in all cases. For the high order ADER-DG schemes a numerical convergence study was carried out at the aid of a manufactured solution, since the analytic solution used in the above stated reference was too simple for a high order DG scheme. It is shown numerically that the convergence rates of ADER-DG schemes is up to sixth order in space and time.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N08 Finite volume methods for boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35L02 First-order hyperbolic equations
35L45 Initial value problems for first-order hyperbolic systems
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76F50 Compressibility effects in turbulence
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76M10 Finite element methods applied to problems in fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics
35Q31 Euler equations

Citations:

Zbl 1406.65068

Software:

MOOD

References:

[1] Abbate, E.; Iollo, A.; Puppo, G., An asymptotic-preserving all-speed scheme for fluid dynamics and nonlinear elasticity, SIAM J. Sci. Comput., 41, A2850-A2879 (2019) · Zbl 1428.65018
[2] Abgrall, R., A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes, J. Comput. Phys., 372, 640-666 (2018) · Zbl 1415.76442
[3] Abgrall, R.; Bacigaluppi, P.; Tokareva, S., A high-order nonconservative approach for hyperbolic equations in fluid dynamics, Comput. Fluids, 169, 10-22 (2018) · Zbl 1410.76277
[4] Abgrall, R.; Karni, S., Computations of compressible multifluids, J. Comput. Phys., 169, 594-623 (2001) · Zbl 1033.76029
[5] Abgrall, R.; Karni, S., A comment on the computation of non-conservative products, J. Comput. Phys., 229, 2759-2763 (2010) · Zbl 1188.65134
[6] Barton, PT; Drikakis, D.; Romenski, E.; Titarev, VA, Exact and approximate solutions of Riemann problems in non-linear elasticity, J. Comput. Phys., 228, 7046-7068 (2009) · Zbl 1172.74032
[7] Bassi, C.; Bonaventura, L.; Busto, S.; Dumbser, M., A hyperbolic reformulation of the Serre-Green-Naghdi model for general bottom topographies, Comput. Fluids, 212, 104716 (2020) · Zbl 1502.76014
[8] Bassi, C.; Busto, S.; Dumbser, M., High order ADER-DG schemes for the simulation of linear seismic waves induced by nonlinear dispersive free-surface water waves, Appl. Numer. Math., 158, 236-263 (2020) · Zbl 1447.74042
[9] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 267-279 (1997) · Zbl 0871.76040
[10] Baumann, CE; Oden, TJ, A discontinuous hp finite element method for the Euler and the Navier-Stokes equations, Int. J. Numer. Methods Fluids, 31, 79-95 (1999) · Zbl 0985.76048
[11] Bhole, A.; Nkonga, B.; Gavrilyuk, S.; Ivanova, K., Fluctuation splitting Riemann solver for a non-conservative modeling of shear shallow water flow, J. Comput. Phys., 392, 205-226 (2019) · Zbl 1452.65185
[12] Boscheri, W.; Dumbser, M., Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes, J. Comput. Phys., 346, 449-479 (2017) · Zbl 1378.76044
[13] Boscheri, W.; Dumbser, M.; Ioriatti, M.; Peshkov, I.; Romenski, E., A structure-preserving staggered semi-implicit finite volume scheme for continuum mechanics, J. Comput. Phys., 424, 109866 (2021) · Zbl 07508471
[14] de Brauer, A.; Iollo, A.; Milcent, T., A Cartesian scheme for compressible multimaterial hyperelastic models with plasticity, Commun. Comput. Phys., 22, 1362-1384 (2017) · Zbl 1488.74140
[15] Brock, R., Development of roll-wave trains in open channels, J. Hydraul. Div., 95, 1401-1428 (1969)
[16] Brock, R., Periodic permanent roll waves, J. Hydraul. Div., 96, 2565-2580 (1970)
[17] Busto, S.; Chiocchetti, S.; Dumbser, M.; Gaburro, E.; Peshkov, I., High order ADER schemes for continuum mechanics, Front. Phys., 8, 32 (2020)
[18] Busto, S.; Dumbser, M.; Escalante, C.; Gavrilyuk, S.; Favrie, N., On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems, J. Sci. Comput., 87, 48 (2021) · Zbl 1465.76060
[19] Busto, S.; Tavelli, M.; Boscheri, W.; Dumbser, M., Efficient high order accurate staggered semi-implicit discontinuous Galerkin methods for natural convection problems, Comput. Fluids, 198, 104399 (2020) · Zbl 1519.76140
[20] Busto, S.; Toro, E.; Vázquez-Cendón, E., Design and analysis of ADER-type schemes for model advection-diffusion-reaction equations, J. Comput. Phys., 327, 553-575 (2016) · Zbl 1422.65203
[21] Castro, M.; Gallardo, J.; López, J.; Parés, C., Well-balanced high order extensions of Godunov’s method for semilinear balance laws, SIAM J. Numer. Anal., 46, 1012-1039 (2008) · Zbl 1159.74045
[22] Castro, M.; Gallardo, J.; Parés, C., High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems, Math. Comput., 75, 1103-1134 (2006) · Zbl 1096.65082
[23] Castro, M.; LeFloch, P.; Muñoz-Ruiz, M.; Parés, C., Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes, J. Comput. Phys., 227, 8107-8129 (2008) · Zbl 1176.76084
[24] Castro, MJ; Fernández, E.; Ferriero, A.; García, JA; Parés, C., High order extensions of Roe schemes for two dimensional nonconservative hyperbolic systems, J. Sci. Comput., 39, 67-114 (2009) · Zbl 1203.65131
[25] Chandrashekar, P.; Nkonga, B.; Meena, AM; Bhole, A., A path conservative finite volume method for a shear shallow water model, J. Comput. Phys., 413, 109457 (2020) · Zbl 1436.76036
[26] Chatterjee, N.; Fjordholm, U., Convergence of second-order, entropy stable methods for multi-dimensional conservation laws, ESAIM Math. Model. Numer. Anal., 54, 4, 1415-1428 (2020) · Zbl 1446.65088
[27] Chavent, G.; Cockburn, B., The local projection \(p^0-p^1\) discontinuous Galerkin finite element method for scalar conservation laws, Math. Model. Numer. Anal., 23, 565-592 (1989) · Zbl 0715.65079
[28] Cheng, T.; Shu, C., Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys., 345, 427-461 (2017) · Zbl 1380.65253
[29] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws-multi-dimensional optimal order detection (MOOD), J. Comput. Phys., 230, 10, 4028-4050 (2011) · Zbl 1218.65091
[30] Cockburn, B.; Hou, S.; Shu, CW, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math. Comput., 54, 545-581 (1990) · Zbl 0695.65066
[31] Cockburn, B.; Lin, SY; Shu, C., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, J. Comput. Phys., 84, 90-113 (1989) · Zbl 0677.65093
[32] Cockburn, B.; Shu, CW, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52, 411-435 (1989) · Zbl 0662.65083
[33] Cockburn, B.; Shu, CW, The Runge-Kutta local projection P1-Discontinuous Galerkin finite element method for scalar conservation laws, Math. Model. Numer. Anal., 25, 337-361 (1991) · Zbl 0732.65094
[34] Cockburn, B.; Shu, CW, The local discontinuous Galerkin method for time-dependent convection diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463 (1998) · Zbl 0927.65118
[35] Cockburn, B.; Shu, CW, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 173-261 (2001) · Zbl 1065.76135
[36] Derigs, D.; Winters, AR; Gassner, G.; Walch, S.; Bohm, M., Ideal GLM-MHD: about the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations, J. Comput. Phys., 364, 420-467 (2018) · Zbl 1392.76037
[37] Dhaouadi, F.; Favrie, N.; Gavrilyuk, S., Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation, Stud. Appl. Math., 2018, 1-20 (2018) · Zbl 1418.35335
[38] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Comput. Fluids, 64, 43-63 (2012) · Zbl 1365.76149
[39] Diot, S.; Loubère, R.; Clain, S., The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems, Int. J. Numer. Methods Fluids, 73, 362-392 (2013) · Zbl 1455.65147
[40] Dumbser, M., Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations, Comput. Fluids, 39, 60-76 (2010) · Zbl 1242.76161
[41] Dumbser, M.; Balsara, D.; Toro, E.; Munz, C., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes, J. Comput. Phys., 227, 8209-8253 (2008) · Zbl 1147.65075
[42] Dumbser, M.; Castro, M.; Parés, C.; Toro, E., ADER schemes on unstructured meshes for non-conservative hyperbolic systems: applications to geophysical flows, Comput. Fluids, 38, 1731-1748 (2009) · Zbl 1177.76222
[43] Dumbser, M.; Enaux, C.; Toro, E., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J. Comput. Phys., 227, 3971-4001 (2008) · Zbl 1142.65070
[44] Dumbser, M.; Facchini, M., A local space-time discontinuous Galerkin method for Boussinesq-type equations, Appl. Math. Comput., 272, 336-346 (2016) · Zbl 1410.76167
[45] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E., FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 199, 625-647 (2010) · Zbl 1227.76043
[46] Dumbser, M.; Loubère, R., A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes, J. Comput. Phys., 319, 163-199 (2016) · Zbl 1349.65447
[47] Dumbser, M.; Peshkov, I.; Romenski, E.; Zanotti, O., High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids, J. Comput. Phys., 314, 824-862 (2016) · Zbl 1349.76324
[48] Dumbser, M.; Toro, EF, On universal Osher-type schemes for general nonlinear hyperbolic conservation laws, Commun. Comput. Phys., 10, 635-671 (2011) · Zbl 1373.76125
[49] Dumbser, M.; Toro, EF, A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., 48, 70-88 (2011) · Zbl 1220.65110
[50] Dumbser, M.; Zanotti, O.; Loubère, R.; Diot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput. Phys., 278, 47-75 (2014) · Zbl 1349.65448
[51] Engsig-Karup, A.; Hesthaven, J.; Bingham, H.; Warburton, T., DG-FEM solution for nonlinear wave-structure interaction using Boussinesq-type equations, Coastal Eng., 55, 197-208 (2008)
[52] Escalante, C.; Dumbser, M.; Castro, M., An efficient hyperbolic relaxation system for dispersive non-hydrostatic water waves and its solution with high order discontinuous Galerkin schemes, J. Comput. Phys., 394, 385-416 (2019) · Zbl 1452.65188
[53] Eskilsson, C.; Sherwin, S., An unstructured spectral/hp element model for enhanced Boussinesq-type equations, Coastal Eng., 53, 947-963 (2006)
[54] Eskilsson, C.; Sherwin, S., Spectral/hp discontinuous Galerkin methods for modelling 2D Boussinesq equations, J. Comput. Phys., 212, 566-589 (2006) · Zbl 1084.76058
[55] Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O., ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics, Mon. Not. R. Astron. Soc., 477, 4543-4564 (2018)
[56] Fambri, F.; Dumbser, M.; Zanotti, O., Space-time adaptive ADER-DG schemes for dissipative flows: compressible Navier-Stokes and resistive MHD equations, Comput. Phys. Commun., 220, 297-318 (2017)
[57] Favrie, N.; Gavrilyuk, S., Diffuse interface model for compressible fluid—compressible elastic-plastic solid interaction, J. Comput. Phys., 231, 2695-2723 (2012) · Zbl 1430.74036
[58] Favrie, N.; Gavrilyuk, S., A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves, Nonlinearity, 30, 2718-2736 (2017) · Zbl 1432.65120
[59] Favrie, N.; Gavrilyuk, S.; Saurel, R., Solid-fluid diffuse interface model in cases of extreme deformations, J. Comput. Phys., 228, 6037-6077 (2009) · Zbl 1280.74013
[60] Fjordholm, U.; Mishra, S., Accurate numerical discretizations of non-conservative hyperbolic systems, ESAIM: Math. Model. Numer. Anal., 46, 1, 187-206 (2012) · Zbl 1272.65064
[61] Foglizzo, T.; Masset, F.; Guilet, J.; Durand, G., Shallow water analogue of the standing accretion shock instability: experimental demonstration and a two-dimensional model, Phys. Rev. Lett., 108, 5, 051103 (2012)
[62] Friedrichs, K., Symmetric positive linear differential equations, Commun. Pure Appl. Math., 11, 333-418 (1958) · Zbl 0083.31802
[63] Friedrichs, K.; Lax, P., Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. USA, 68, 1686-1688 (1971) · Zbl 0229.35061
[64] Gallardo, J.; Parés, C.; Castro, M., On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas, J. Comput. Phys., 227, 574-601 (2007) · Zbl 1126.76036
[65] Gassner, G.; Lörcher, F.; Munz, C., A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes, J. Comput. Phys., 224, 1049-1063 (2007) · Zbl 1123.76040
[66] Gassner, G.; Winters, A.; Kopriva, D., A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations, Appl. Math. Comput., 272, 291-308 (2016) · Zbl 1410.65393
[67] Gavrilyuk, S.; Favrie, N.; Saurel, R., Modelling wave dynamics of compressible elastic materials, J. Comput. Phys., 227, 2941-2969 (2008) · Zbl 1155.74020
[68] Gavrilyuk, S.; Gouin, H., Geometric evolution of the Reynolds stress tensor, Int. J. Eng. Sci., 59, 65-73 (2012) · Zbl 1423.76137
[69] Gavrilyuk, S.; Ivanova, K.; Favrie, N., Multi-dimensional shear shallow water flows: problems and solutions, J. Comput. Phys., 366, 252-280 (2018) · Zbl 1406.65068
[70] Godunov, S., An interesting class of quasilinear systems, Dokl. Akad. Nauk SSSR, 139, 3, 521-523 (1961) · Zbl 0125.06002
[71] Godunov, S., Symmetric form of the magnetohydrodynamic equation, Numer. Methods Mech. Contin. Medium, 3, 1, 26-34 (1972)
[72] Godunov, S.; Peshkov, I., Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium, Comput. Math. Math. Phys., 50, 8, 1409-1426 (2010) · Zbl 1224.74017
[73] Godunov, S.; Romenski, E., Nonstationary equations of the nonlinear theory of elasticity in Euler coordinates, J. Appl. Mech. Tech. Phys., 13, 868-885 (1972)
[74] Godunov, S., Romenski, E.: Thermodynamics, conservation laws, and symmetric forms of differential equations in mechanics of continuous media. In: Computational Fluid Dynamics Review 95, pp. 19-31. Wiley, NY (1995) · Zbl 0875.73025
[75] Godunov, S.; Romenski, E., Elements of Continuum Mechanics and Conservation Laws (2003), Dordrecht: Kluwer Academic/Plenum Publishers, Dordrecht · Zbl 1031.74004
[76] Godunov, SK, Thermodynamic formalization of the fluid dynamics equations for a charged dielectric in an electromagnetic field, Comput. Math. Math. Phys., 52, 787-799 (2012) · Zbl 1274.35285
[77] Godunov, SK; Romenskii, EI, Nonstationary equations of nonlinear elasticity theory in Eulerian coordinates, J. Appl. Mech. Tech. Phys., 13, 6, 868-884 (1972)
[78] Hennemann, S.; Rueda-Ramírez, A.; Hindenlang, F.; Gassner, G., A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations, J. Comput. Phys., 426, 109935 (2021) · Zbl 07510051
[79] Hidalgo, A.; Dumbser, M., ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations, J. Sci. Comput., 48, 173-189 (2011) · Zbl 1221.65231
[80] Ivanova, K.; Gavrilyuk, S., Structure of the hydraulic jump in convergent radial flows, J. Fluid Mech., 860, 441-464 (2019) · Zbl 1415.76291
[81] Jackson, H.; Nikiforakis, N., A unified Eulerian framework for multimaterial continuum mechanics, J. Comput. Phys., 401, 109022 (2019) · Zbl 1453.65252
[82] Klaij, C.; der Vegt, JV; der Ven, HV, Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations, J. Comput. Phys., 217, 589-611 (2006) · Zbl 1099.76035
[83] Levy, D.; Shu, C.; Yan, J., Local discontinuous Galerkin methods for nonlinear dispersive equations, J. Comput. Phys., 196, 751-772 (2004) · Zbl 1055.65109
[84] Liu, Y.; Shu, C.; Zhang, M., Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes, J. Comput. Phys., 354, 163-178 (2018) · Zbl 1380.76162
[85] Maso, GD; LeFloch, P.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483-548 (1995) · Zbl 0853.35068
[86] Muñoz, M.; Parés, C., Godunov method for nonconservative hyperbolic systems, Math. Model. Numer. Anal., 41, 169-185 (2007) · Zbl 1124.65077
[87] Ndanou, S.; Favrie, N.; Gavrilyuk, S., Criterion of hyperbolicity in hyperelasticity in the case of the stored energy in separable form, J. Elast., 115, 1-25 (2014) · Zbl 1302.35254
[88] Ndanou, S.; Favrie, N.; Gavrilyuk, S., Multi-solid and multi-fluid diffuse interface model: applications to dynamic fracture and fragmentation, J. Comput. Phys., 295, 523-555 (2015) · Zbl 1349.74377
[89] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321 (2006) · Zbl 1130.65089
[90] Parés, C.; Castro, M., On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems, Math. Model. Numer. Anal., 38, 821-852 (2004) · Zbl 1130.76325
[91] Peshkov, I.; Boscheri, W.; Loubère, R.; Romenski, E.; Dumbser, M., Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity, J. Comput. Phys., 387, 481-521 (2019) · Zbl 1452.74022
[92] Peshkov, I.; Pavelka, M.; Romenski, E.; Grmela, M., Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations, Contin. Mech. Thermodyn., 30, 6, 1343-1378 (2018) · Zbl 1439.70036
[93] Peshkov, I.; Romenski, E., A hyperbolic model for viscous Newtonian flows, Contin. Mech. Thermodyn., 28, 85-104 (2016) · Zbl 1348.76046
[94] Peshkov, I.; Romenski, E.; Dumbser, M., Continuum mechanics with torsion, Contin. Mech. Thermodyn., 31, 1517-1541 (2019)
[95] Ranocha, H.; Dalcin, L.; Parsani, M., Fully discrete explicit locally entropy-stable schemes for the compressible Euler and Navier-Stokes equations, Comput. Math. Appl., 80, 5, 1343-1359 (2020) · Zbl 1524.65677
[96] Reed, W., Hill, T.: Triangular mesh methods for neutron transport equation. Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory (1973)
[97] Rhebergen, S.; Bokhove, O.; van der Vegt, J., Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. Comput. Phys., 227, 1887-1922 (2008) · Zbl 1153.65097
[98] Rhebergen, S.; Cockburn, B., A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, J. Comput. Phys., 231, 4185-4204 (2012) · Zbl 1426.76298
[99] Rhebergen, S.; Cockburn, B.; van der Vegt, JJ, A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys., 233, 339-358 (2013) · Zbl 1286.76033
[100] Richard, GL; Gavrilyuk, SL, A new model of roll waves: comparison with Brock’ s experiments, J. Fluid Mech., 698, 374-405 (2012) · Zbl 1250.76041
[101] Richard, GL; Gavrilyuk, SL, The classical hydraulic jump in a model of shear shallow-water flows, J. Fluid Mech., 725, 492-521 (2013) · Zbl 1287.76089
[102] Romenski, E., Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics, Math. Comput. Model., 28, 10, 115-130 (1998) · Zbl 1076.74501
[103] Romenski, E.; Belozerov, AA; Peshkov, IM, Conservative formulation for compressible multiphase flows, Q. Appl. Math., 74, 1, 113-136 (2016) · Zbl 1336.35305
[104] Romenski, E.; Drikakis, D.; Toro, E., Conservative models and numerical methods for compressible two-phase flow, J. Sci. Comput., 42, 68-95 (2010) · Zbl 1203.76095
[105] Romenski, E.; Peshkov, I.; Dumbser, M.; Fambri, F., A new continuum model for general relativistic viscous heat-conducting media, Philos. Trans. R. Soc. A, 378, 20190175 (2020) · Zbl 1462.82032
[106] Romenski, E.; Resnyansky, A.; Toro, E., Conservative hyperbolic formulation for compressible two-phase flow with different phase pressures and temperatures, Q. Appl. Math., 65, 259-279 (2007) · Zbl 1145.35430
[107] Rusanov, VV, Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR, 1, 267-279 (1961)
[108] Tadmor, E., The numerical viscosity of entropy stable schemes for systems of conservation laws I, Math. Comput., 49, 91-103 (1987) · Zbl 0641.65068
[109] Tavelli, M.; Dumbser, M., A staggered, space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes, J. Comput. Phys., 319, 294-323 (2016) · Zbl 1349.76271
[110] Tavelli, M.; Dumbser, M., A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers, J. Comput. Phys., 341, 341-376 (2017) · Zbl 1376.76028
[111] Tavelli, M.; Dumbser, M., Arbitrary high order accurate space-time discontinuous Galerkin finite element schemes on staggered unstructured meshes for linear elasticity, J. Comput. Phys., 366, 386-414 (2018) · Zbl 1406.74647
[112] Teshukov, VM, Gas dynamic analogy for vortex free-boundary flows, J. Appl. Mech. Tech. Phys., 48, 303-309 (2007) · Zbl 1150.76335
[113] Titarev, V.; Toro, E., ADER: arbitrary high order Godunov approach, J. Sci. Comput., 17, 1-4, 609-618 (2002) · Zbl 1024.76028
[114] Titarev, V.; Toro, E., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. Comput. Phys., 204, 715-736 (2005) · Zbl 1060.65641
[115] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics (1999), Berlin: Springer, Berlin · Zbl 0923.76004
[116] Toro, E., Shock-Capturing Methods for Free-Surface Shallow Flows (2001), New York: Wiley, New York · Zbl 0996.76003
[117] Toro, E.; Millington, R.; Nejad, L.; Toro, E., Towards very high order Godunov schemes, Godunov Methods. Theory and Applications, 905-938 (2001), Dordrecht: Kluwer/Plenum Academic Publishers, Dordrecht · Zbl 0989.65094
[118] Toro, E.; Titarev, V., Solution of the generalized Riemann problem for advection-reaction equations, Proc. R. Soc. Lond., 458, 271-281 (2002) · Zbl 1019.35061
[119] Toro, EF; Titarev, VA, Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys., 212, 1, 150-165 (2006) · Zbl 1087.65590
[120] van der Vegt, JJW; van der Ven, H., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows I. General formulation, J. Comput. Phys., 182, 546-585 (2002) · Zbl 1057.76553
[121] van der Ven, H.; van der Vegt, JJW, Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows II. Efficient flux quadrature, Comput. Methods Appl. Mech. Eng., 191, 4747-4780 (2002) · Zbl 1099.76521
[122] Yan, J.; Shu, C., A local discontinuous Galerkin method for KdV type equations, SIAM J. Numer. Anal., 40, 769-791 (2002) · Zbl 1021.65050
[123] Yan, J.; Shu, C., Local discontinuous Galerkin methods for partial differential equations with higher order derivatives, J. Sci. Comput., 17, 27-47 (2002) · Zbl 1003.65115
[124] Zanotti, O.; Fambri, F.; Dumbser, M.; Hidalgo, A., Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting, Comput. Fluids, 118, 204-224 (2015) · Zbl 1390.76381
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.