×

Impact of non-Fourier heat flux in bidirectional flow of carbon nanotubes over a stretching sheet with variable thickness. (English) Zbl 07851726

Summary: Three-dimensional stretched flow of carbon nanotubes with variable thickness is examined. Christov proposed non-Fourier heat flux to capture impact of thermal relaxation time. Suitable transformations are used to obtain nonlinear ordinary differential systems. Convergent series solutions are derived. Influence of certain variables on the fluid properties is discussed. Findings demonstrate that the magnitude of the surface drag force is suppressed with increment in wall thickness parameter whereas it intensified for increasing nanoparticles volume fraction. Increase in the shape parameter and nanoparticles volume fraction enhanced the flow. Temperature is noticed higher with an increase in thermal relaxation time.

MSC:

80Axx Thermodynamics and heat transfer
35Qxx Partial differential equations of mathematical physics and other areas of application
76Dxx Incompressible viscous fluids
Full Text: DOI

References:

[1] Choi, S. U.S., Enhancing thermal conductivity of fluids with nanoparticle, (ASME Int. Mech. Eng. Cong. Exp., Vol. 66, 1995), 99-105
[2] Eastman, J. A.; Choi, S. U.S.; Li, S.; Yu, W.; Thompson, L. J., Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718-720, 2001
[3] Tiwari, R. K.; Das, M. K., Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transfer, 50, 2002-2018, 2007 · Zbl 1124.80371
[4] Oztop, H.; Abu-Nada, E., Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29, 1326-1336, 2008
[5] Antar, Z.; Noel, H.; Feller, J. F.; Glouannec, P.; Elleuch, K., Thermophysical and radiative properties of conductive biopolymer composite, Mater. Sci. Forum, 714, 115-122, 2012
[6] Sheikholeslami, M.; Ellahi, R., Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid, Int. J. Heat Mass Transfer, 89, 799-808, 2015
[7] Yin, C.; Zheng, L.; Zhang, C.; Zhang, X., Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction, Propuls. Power Res., 6, 25-30, 2017
[8] Tlili, I.; Mustafa, M.; Kumar, K.; Sandeep, N., Effect of asymmetrical heat rise/fall on the film flow of magnetohydrodynamic hybrid ferrofluid, Sci. Rep., 10, 6677, 2020
[9] Nawaz, S.; Hayat, T.; Alsaedi, A., Numerical study for peristalsis of Sisko nanomaterials with entropy generation, J. Therm. Anal. Calorim., 139, 2129-2143, 2020
[10] Ramudu, A. C.V.; Kumar, K. A.; Sugunamma, V.; Sandeep, N., Heat and mass transfer in MHD Casson nanofluid flow past a stretching sheet with thermophoresis and Brownian motion, Heat Transfer, 49, 5020-5037, 2020
[11] Xue, Q., Model for thermal conductivity of carbon nanotubebased composites, Phys. B, 368, 302-307, 2005
[12] Ding, Y.; Alias, H.; Wen, D.; William, R. A., Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat Mass Transfer, 49, 240-250, 2006
[13] Akbar, N. S.; Raza, M.; Ellahi, R., Influence of induced magnetic field and heat flux with the suspension of carbon nanotubes for the peristaltic flow in a permeable channel, J. Magn. Magn. Mater., 381, 405-415, 2015
[14] Hayat, T.; Khalid, H.; Waqas, M.; Alsaedi, A., Numerical simulation for radiative flow of nanoliquid by rotating disk with carbon nanotubes and partial slip, Comput. Methods Appl. Mech. Engrg., 341, 397-408, 2018 · Zbl 1440.76153
[15] Hayat, T.; Haider, F.; Muhammad, T.; Ahmad, B., Darcy-Forchheimer flow of carbon nanotubes due to a convectively heated rotating disk with homogeneous-heterogeneous reactions, J. Therm. Anal. Calorim., 137, 1939-1949, 2019
[16] Anuar, N. S.; Bachok, N.; Arifin, N. M.; Rosali, H., Stagnation point flow and heat transfer over an exponentially stretching/shrinking sheet in CNT with homogeneous-heterogeneous reaction: Stability analysis, Symmetry, 11, 522, 2019 · Zbl 1425.80006
[17] Fourier, J. B.J., Theorie Analytique de la Chaleur, 1822, Chez Firmin Didot: Chez Firmin Didot Paris
[18] Cattaneo, C., Sulla conduzionedelcalore, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 3, 83-101, 1948 · Zbl 0035.26203
[19] Tibullo, V.; Zampoli, V., A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids, Mech. Res. Commun., 38, 77-79, 2011 · Zbl 1272.35184
[20] Christov, C. I., On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction, Mech. Res. Commun., 36, 481-486, 2009 · Zbl 1258.80001
[21] Kumar, K. A.; Reddy, J. V.R.; Sugunamma, V.; Sandeep, N., Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink, Alex. Eng. J., 57, 435-443, 2018
[22] Kumar, K. A.; Sugunamma, V.; Sandeep, N., A non-Fourier heat flux model for magnetohydrodynamic micropolar liquid flow across a coagulated sheet, Heat Transfer-Asian Res., 48, 2819-2843, 2019
[23] Kumar, K. A.; Sugunamma, V.; Sandeep, N., Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model, J. Therm. Anal. Calorim., 139, 3661-3674, 2020
[24] Reddy, S.; Naikoti, K.; Rashidi, M. M., MHD flow and heat transfer characteristics of Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity, Trans. A Razmadze Math. Inst., 171, 195-211, 2017 · Zbl 1393.76141
[25] Subhashini, S. V.; Sumathi, R.; Pop, I., Dual solutions in a thermal diffusive flow over a stretching sheet with variable thickness, Int. Commun. Heat Mass Transfer, 48, 61-66, 2013
[26] Hayat, T.; Hussain, Z.; Alsaedi, A.; Asghar, S., Carbon nanotubes effects in the stagnation point flow towards a nonlinear stretching sheet with variable thickness, Adv. Powder Technol., 27, 1677-1688, 2016
[27] Prasad, K. V.; Vajravelu, K.; Vaidya, H.; Gorder, R. A.V., MHD flow and heat transfer in a nanofluid over a slender elastic sheet with variable thickness, Results Phys., 7, 1462-1474, 2017
[28] Liu, L.; Zheng, L.; Chen, Y.; Liu, F., Fractional boundary layer flow and heat transfer over a stretching sheet with variable thickness, J. Heat Transfer, 140, Article 091701 pp., 2018
[29] Khader, M. M.; Megahed, A. M., Boundary layer flow due to a stretching sheet with a variable thickness and slip velocity, J. Appl. Mech. Tech. Phys., 56, 241-247, 2015 · Zbl 1329.76089
[30] Ramesh, G. K.; Prasannakumara, B. C.; Gireesha, B. J.; Rashidi, M. M., Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation, J. Appl. Fluid Mech., 9, 1115-1122, 2016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.