×

Smooth non-special surfaces of \({\mathbb{P}}^ 4\). (English) Zbl 0722.14018

The authors consider two notions of non-speciality for a smooth nondegenerate surface S in \({\mathbb{P}}^ 4:\)
The surface S is sectionally non-special if the general hyperplane section C is a non-special curve, i.e. \(h^ 1(C,{\mathcal O}_ C(1))=0;\)
The surface S is non-special if \(h^ 1(S,{\mathcal O}_ S(1))=0.\)
The authors prove that there is a finite number of such surfaces S and they give a complete list of them. - To obtain the first theorem on sectionally non-special surfaces they study the adjunction map \(\phi\), i.e. the map given by the linear system \(| K+H|\), where K is the canonical divisor on S and H is the hyperplane divisor, and they use some results of A. Sommese and A. Van de Ven on the map \(\phi\), and of P. Ellia and G. Sacchiero on the classification of the smooth conic bundles of \({\mathbb{P}}^ 4\). The authors consider the relations between the irregularity q of S, the sectional genus \(\pi\), i.e. the genus of the general hyperplane section C, and the dimension of the image \(\phi\) (S) of S by the adjunction map. - Then they can prove that the pair (d,\(\pi\)) can take only a finite number of values, where d is the degree of S and \(\pi\) the sectional genus of S. From this theorem the authors obtain also a description of the smooth varieties X of codimension 2 in \({\mathbb{P}}^ n\), \(n\geq 5\), such that the general intersection with a linear space of dimension \(3\) is a non-special curve.
To prove the theorem on non-special surfaces they assume that the surface S is not of general type, and by the preceding result they can suppose that the general hyperplane section C is special. - Then they use results on classification of surfaces.
Reviewer: M.Vaquie (Paris)

MSC:

14J10 Families, moduli, classification: algebraic theory
14M07 Low codimension problems in algebraic geometry
14N05 Projective techniques in algebraic geometry
14J25 Special surfaces

References:

[1] [A] Alexander, J.: ”Surfaces rationnelles non-spéciales dans \(\mathbb{P}\)4”Math.Z.,200, 87–110 (1988) · Zbl 0702.14031 · doi:10.1007/BF01161747
[2] [Au] Aure, A.B.: ”On surfaces in projective 4-space”, Thesis (Oslo, 1987)
[3] [Be] Beauville, A.: ”Surfaces algébriques complexes”,Astérisque 54 (1978)
[4] [BL] Barth, W., Larsen, M.E.: ”On the homotopy types of complex projective manifolds”,Math. Scan.,30, 88–94 (1972) · Zbl 0238.32008
[5] [C] Castelnuovo, G.: ”Sulle superfici algebriche le cui sezioni iperpiane sono curve iperellittiche”,Rend. Circ. Matem. Palermo,4, 73–88 (1890) · JFM 22.0788.01 · doi:10.1007/BF03011642
[6] [Co] Cossec, F.R.: ”On the Picard group of Enriques surfaces”,Math. Ann,271, 577–600 (1985) · doi:10.1007/BF01456135
[7] [CV] Conte, A., Verra A.: ”Reye constructions for nodal Enriques surfaces”, preprint. · Zbl 0849.14015
[8] [ES] Ellia Ph., Sacchiero, G.: preprint
[9] [H] Hartshorne, R.: ”Algebraic Geometry”, Berlin-Heidelberg-New York, Springver Verlag (1977) · Zbl 0367.14001
[10] [I1] Ionescu, P.: ”Embedded projective varieties of small invariants, II”,Rev. Roumaine math. pures appl.,31, 539–544 (1986)
[11] [I2] Ionescu, P.: ”Generalized adjunction and applications”,Math. Proc. Comb. Phil. Soc.,99, 457–472 (1986) · Zbl 0619.14004 · doi:10.1017/S0305004100064409
[12] [L] Lanteri, A.: ”On the existence of scrolls in \(\mathbb{P}\)4”Lincei, Rend. Sc. fis. mat. e. nat.,LXIX, 223–227 (1980)
[13] [O1] Okonek, Ch.: ”3-mannigfaltigkeiten im \(\mathbb{P}\)5 und ihre zugehörigen stabilen garben”,Manuscripta Math.,38, 175–199 (1982) · Zbl 0534.14023 · doi:10.1007/BF01168590
[14] [O2] Okonek, Ch.: ”Über 2-codimensionale Untermannigfaltigkeiten vom Grad 7 in \(\mathbb{P}\)4 und \(\mathbb{P}\)5”Math. Z.,187, 209–219 (1984) · Zbl 0575.14030 · doi:10.1007/BF01161705
[15] [O3] Okonek, Ch.: ”Flächen vom Grad 8 im \(\mathbb{P}\)4”,Math. Z.,191, 207–223 (1986) · Zbl 0611.14032 · doi:10.1007/BF01164025
[16] [R1] Ranestad, K.: ”On smooth surfaces of degree 10 in the projective fourspace”, Thesis (Oslo, 1988)
[17] [R2] Ranestad, K.: ”Surfaces of degree 10 in the projective fourspace”, to appear in ”Proceedings of Cortona meeting”, Symposia Mathematica, INDAM, Academic Press · Zbl 0827.14023
[18] [S] Severi, F.: ”Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e ai suoi punti tripli apparenti”,Rend. Circ. Mat. Palermo,15, 33–51 (1901) · JFM 32.0648.04 · doi:10.1007/BF03017734
[19] [Ser] Serrano, F.: ”Divisors of bielliptic surfaces and embeddings in \(\mathbb{P}\)4”, preprint
[20] [So] Sommese, A.J.: ”Hyperplane sections of projective surfaces I–The adjunction mapping”,Duke Math. J.,46, 377–401 (1979) · Zbl 0415.14019 · doi:10.1215/S0012-7094-79-04616-7
[21] [SV] Sommese, A.J., Van de Ven, A.: ”On the adjunction mapping”,Math. Ann.,278, 593–603 (1987) · Zbl 0655.14001 · doi:10.1007/BF01458083
[22] [V] Van de Ven, A.: ”On the 2-connectedness of very ample divisors on a surface”,Duke Math. J.,46, 403–407 (1979) · Zbl 0458.14003 · doi:10.1215/S0012-7094-79-04617-9
[23] [Z] Zak, F.L.: ”Projections of algebraic varieties”,Mat. Sb.,116 no 4, 593–602 (1981); English translation:Math. USSR Sbornik 44 no4, 535–544 (1983) · Zbl 0484.14016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.