×

A Groenewold-Van Hove theorem for \(S^ 2\). (English) Zbl 0856.58016

Summary: We prove that there does not exist a nontrivial quantization of the Poisson algebra of the symplectic manifold \(S^2\) which is irreducible on the \(\text{su}(2)\) subalgebra generated by the components \(\{S_1, S_2, S_3\}\) of the spin vector. In fact, there does not exist such a quantization of the Poisson subalgebra \(\mathcal P\) consisting of polynomials in \(\{S_1, S_2, S_3\}\). Furthermore, we show that the maximal Poisson subalgebra of \(\mathcal P\) containing \(\{1, S_1, S_2, S_3\}\) that can be so quantized is just that generated by \(\{1, S_1, S_2, S_3\}\).

MSC:

53D50 Geometric quantization
81S99 General quantum mechanics and problems of quantization

Software:

NCAlgebra

References:

[1] Sheldon Axler, Paul Bourdon, and Wade Ramey, Harmonic function theory, Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 1992. · Zbl 0765.31001
[2] Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged; With the assistance of Tudor Raţiu and Richard Cushman. · Zbl 0393.70001
[3] Asim O. Barut and Ryszard Rączka, Theory of group representations and applications, PWN — Polish Scientific Publishers, Warsaw, 1977.
[4] Paul R. Chernoff, Mathematical obstructions to quantization, Proceedings of the Third Workshop on Lie-Admissible Formulations (Univ. Massachusetts, Boston, Mass., 1980), Part B, 1980/81, pp. 879 – 898. · Zbl 0455.58014
[5] Универсал\(^{\приме}\)ные обертывающие алгебры., Издат. ”Мир”, Мосцощ, 1978 (Руссиан). Транслатед фром тхе Френч бы Ју. А. Бахтурин; Едитед бы Д. П. Žелобенко.
[6] Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. · Zbl 0682.43001
[7] Mark J. Gotay, Functorial geometric quantization and Van Hove’s theorem, Internat. J. Theoret. Phys. 19 (1980), no. 2, 139 – 161. · Zbl 0447.58020 · doi:10.1007/BF00669766
[8] Y. S. Kim and W. W. Zachary , The physics of phase space, Lecture Notes in Physics, vol. 278, Springer-Verlag, Berlin, 1987. Nonlinear dynamics and chaos, geometric quantization and Wigner function. · Zbl 0627.58021
[9] Groenewold, H.J. [1946] On the principles of elementary quantum mechanics. Physics 12, 405-460. · Zbl 0060.45002
[10] Victor Guillemin and Shlomo Sternberg, Symplectic techniques in physics, Cambridge University Press, Cambridge, 1984. · Zbl 0576.58012
[11] Helton, J.W. and Miller, R.L. [1994] NC Algebra: A Mathematica Package for Doing Non Commuting Algebra. v0.2 (Available from ncalg@ucsd.edu, La Jolla).
[12] A. Joseph, Derivations of Lie brackets and canonical quantisation, Comm. Math. Phys. 17 (1970), 210 – 232. · Zbl 0194.58402
[13] Karasev, M. [1994] Private communication.
[14] Albert Messiah, Quantum mechanics. Vol. II, Translated from the French by J. Potter, North-Holland Publishing Co., Amsterdam; Interscience Publishers, a division of John Wiley & Sons, Inc., New Ynrk, 1962. · Zbl 0102.42602
[15] Marc A. Rieffel, Deformation quantization of Heisenberg manifolds, Comm. Math. Phys. 122 (1989), no. 4, 531 – 562. · Zbl 0679.46055
[16] G. M. Tuynman, Generalized Bergman kernels and geometric quantization, J. Math. Phys. 28 (1987), no. 3, 573 – 583. · Zbl 0616.58041 · doi:10.1063/1.527642
[17] Van Hove, L. [1951] Sur le problème des relations entre les transformations unitaires de la mécanique quantique et les transformations canoniques de la mécanique classique. Acad. Roy. Belgique Bull. Cl. Sci. (5) 37, 610-620. · Zbl 0044.23103
[18] Van Hove, L. [1951] Sur certaines représentations unitaires d’un groupe infini de transformations. Mem. Acad. Roy. Belgique Cl. Sci 26, 61-102. · Zbl 0045.38701
[19] von Neumann, J. [1955] Mathematical Foundations of Quantum Mechanics. (Princeton. Univ. Press, Princeton). · Zbl 0064.21503
[20] N. M. J. Woodhouse, Geometric quantization, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992. Oxford Science Publications. · Zbl 0747.58004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.