×

Euler’s transformation, zeta functions and generalizations of Wallis’ formula. arXiv:2201.09674

Preprint, arXiv:2201.09674 [math.NT] (2022).
Summary: In this note, we extend Euler’s transformation formula from the alternating series to more general series. Then we give new expressions for the Riemann zeta function \(\zeta(s)\) by the generalized difference operator \(\Delta_{c}\), which provide analytic continuation of \(\zeta(s)\) and new ways to evaluate the special values of \(\zeta(-m)\) for \(m=0,1,2,\ldots\). Applying these results, we further extend Huylebrouck’s generalization of Wallis’ well-known formula for \(\pi\) in the half planes Re\((s)>0\) and Re\((s)>-1\), respectively. They imply several interesting special cases including \[ \frac{2\pi}{3^{\frac{3}{2}}}=\frac{3^{\frac{4}{3}}}{2^{\frac{4}{3}}} \frac{2^{\frac{1}{3}}\cdot3^{\frac{1}{3}}\cdot3^{\frac{1}{3}}\cdot4^{\frac{1}{3}}\cdot6^{\frac{2}{3}}\cdot6^{\frac{2}{3}}}{4^{\frac{1}{3}}\cdot4^{\frac{1}{3}}\cdot5^{\frac{1}{3}}\cdot5^{\frac{1}{3}}\cdot4^{\frac{2}{3}}\cdot5^{\frac{2}{3}}}\cdots, \] \[ 3^{\gamma-\frac{\log 3}{2}}=\frac{3^{\frac{1}{3}}\cdot3^{\frac{1}{3}}}{2^{\frac{1}{2}}\cdot4^{\frac{1}{4}}} \frac{6^{\frac{1}{6}}\cdot6^{\frac{1}{6}}}{5^{\frac{1}{5}}\cdot7^{\frac{1}{7}}}\frac{9^{\frac{1}{9}}\cdot9^{\frac{1}{9}}}{8^{\frac{1}{8}}\cdot10^{\frac{1}{10}}}\cdots, \] and \[ \left(3\left(\frac{2\pi e^{\gamma}}{A^{12}}\right)^{2}\right)^{\frac{\pi^2}{18}}=\frac{3^{\frac{1}{3^2}}\cdot3^{\frac{1}{3^2}}}{2^{\frac{1}{2^2}}\cdot4^{\frac{1}{4^2}}} \frac{6^{\frac{1}{6^2}}\cdot6^{\frac{1}{6^2}}}{5^{\frac{1}{5^2}}\cdot7^{\frac{1}{7^2}}}\frac{9^{\frac{1}{9^2}}\cdot9^{\frac{1}{9^2}}}{8^{\frac{1}{8^2}}\cdot10^{\frac{1}{10^2}}}\cdots,\] where \(\gamma\) is the Euler-Mascheroni constant and \(A\) is the Glaisher-Kinkelin constant.

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11B68 Bernoulli and Euler numbers and polynomials
11Y60 Evaluation of number-theoretic constants
40G05 Cesàro, Euler, Nörlund and Hausdorff methods
26B20 Integral formulas of real functions of several variables (Stokes, Gauss, Green, etc.)
arXiv data are taken from the arXiv OAI-PMH API. If you found a mistake, please report it directly to arXiv.