×

The singularity method in unsteady Stokes flow: hydrodynamic force and torque around a sphere in time-dependent flows. (English) Zbl 1415.76140

Summary: The equations for the hydrodynamic force and torque acting on a sphere in unsteady Stokes equations under different flow conditions are solved analytically by means of the singularity method. This analytical technique is based on the combination of suitable singularity solutions (also called fundamental solutions) such as primary Stokeslets, potential dipoles, or higher-order singularities, to construct the flow field. The different flows considered here include four examples: (1) a rotating sphere in a viscous flow, (2) a stationary sphere in a time-dependent shear flow, (3) a sphere with free rotation in a simple shear flow, as well as (4) a stationary sphere in a time-dependent axisymmetric parabolic flow. Our paradigm is to derive the fundamental solutions in unsteady Stokes flows and to express the solutions as a convolution integral in time using the time-space fundamental solutions. Next the Laplace transform is used to determine the strength of the distributed singularities that induce the velocity field around a stationary or rotating sphere. Then we use the computed strength of the singularities to derive hydrodynamic force and torque. In particular, for the problem of a stationary sphere in unsteady axisymmetric parabolic flow, our solution for the time-dependent force acting on the sphere consists of five force components – the well-known quasi-steady Stokes drag, the added mass term, the Basset historic (memory) force, and two additional memory forces. The first additional memory force due to the rate change of velocity, we find, is similar to the result obtained by C. J. Lawrence and S. Weinbaum [ibid. 171, 209–218 (1986; Zbl 0611.76048)] for the ostensibly unrelated setting of a slightly deformed translating spheroid. The second additional memory force comes from the effect of the rate change of acceleration and is found for the first time in this study to the best of our knowledge.

MSC:

76D07 Stokes and related (Oseen, etc.) flows
76D05 Navier-Stokes equations for incompressible viscous fluids
76D10 Boundary-layer theory, separation and reattachment, higher-order effects

Citations:

Zbl 0611.76048
Full Text: DOI

References:

[1] Avudainayagam, A.; Geetha, J., Unsteady singularities of Stokes’ flows in two dimensions, Intl J. Engng Sci., 33, 1713-1724, (1995) · Zbl 0899.76109 · doi:10.1016/0020-7225(95)00028-V
[2] Basset, A. B.1888A Treatise on Hydrodynamics, vol. 2. Deighton Bell. · JFM 20.0970.01
[3] Batchelor, G. K., Slender-body theory for particles of arbitrary cross-section in Stokes flow, J. Fluid Mech., 44, 419-440, (1970) · Zbl 0216.52401 · doi:10.1017/S002211207000191X
[4] Bentwich, M.; Miloh, V., The unsteady matched Stokes-Oseen solution for the flow past a sphere, Fluid Mech., 88, 17-32, (1978) · doi:10.1017/S0022112078001962
[5] Blake, J. R., A note on the image system for a Stokeslet in a no-slip boundary, Proc. Camb. Phil. Soc., 70, 303-310, (1971) · Zbl 0244.76016 · doi:10.1017/S0305004100049902
[6] Brenner, H.; Happel, J., Slow viscous flow past a sphere in a cylindrical tube, J. Fluid Mech., 4, 195-213, (1958) · Zbl 0083.40807 · doi:10.1017/S0022112058000392
[7] Bretherton, F. P., The motion of rigid particles in a shear flow at low Reynolds number, J. Fluid Mech., 14, 284-304, (1962) · Zbl 0109.43605 · doi:10.1017/S002211206200124X
[8] Burgers, J. M., On the motion of small particles of elongated form suspended in a viscous liquid. Chap. I11 of Second Report on Viscosity and Plasticity, K. Ned. Akad. Wet. Verhand., 16, 113-184, (1938) · JFM 64.0877.02
[9] Chan, A. T.; Chwang, A. T., The unsteady Stokeslet and Oseenlet, Proc. Inst. Mech. Engrs, 214, 175-179, (2000) · doi:10.1243/0954407001527637
[10] Chwang, A. T.; Wu, T. Y., Hydrodynamics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows, J. Fluid Mech., 67, 787-815, (1975) · Zbl 0309.76016 · doi:10.1017/S0022112075000614
[11] Clarke, R. J.; Jensen, O. E.; Billingham, J.; Williams, P. M., Three-dimensional flow due to a microcantilever oscillating near a wall: an unsteady slender-body analysis, Proc. R. Soc. A, 462, 913-933, (2006) · Zbl 1149.76621 · doi:10.1098/rspa.2005.1607
[12] Cox, R. G.; Zia, I. Y. Z.; Mason, S. G., Particle motions in sheared suspensions XXV. Streamlines around cylinders and spheres, J. Colloid Interface Sci., 27, 7-18, (1968) · doi:10.1016/0021-9797(68)90003-9
[13] Cox, R. G., The motion of long slender bodies in a viscous fluid. Part 1. General theory, J. Fluid Mech., 44, 791-810, (1970) · Zbl 0267.76015 · doi:10.1017/S002211207000215X
[14] Feng, J.; Joseph, D. D., The unsteady motion of solid bodies in creeping flows, J. Fluid Mech., 303, 83-102, (1995) · Zbl 0867.76017 · doi:10.1017/S0022112095004186
[15] Feuillebois, F.; Lasek, A., On the rotational historic term in non-stationary Stokes flow, Q. J. Mech. Appl. Maths, 31, 435-443, (1978) · Zbl 0391.76029 · doi:10.1093/qjmam/31.4.435
[16] Grimm, M.; Franosch, T.; Jeney, S., High-resolution detection of Brownian motion for quantitative optical tweezers experiments, Phys. Rev. E, 86, 2, (2012) · doi:10.1103/PhysRevE.86.021912
[17] Guenther, R. B.; Thomann, E. A., Fundamental solutions of Stokes and Oseen problem in two spatial dimensions, J. Math. Fluid Mech., 9, 489-505, (2007) · Zbl 1132.35435 · doi:10.1007/s00021-005-0209-z
[18] Happel, J.; Brenner, H., Low Reynolds Number Hydrodynamics, (1965), Prentice Hall
[19] Hasegawa, M.; Onishi, M.; Soya, M., Fundamental solution for transient incompressible viscous flow and its application to the two dimensional problem, Struct. Engng Earthquake Eng., 3, 23-32, (1986)
[20] Hsiao, C. H.; Young, D. L., Calculation of hydrodynamic forces for unsteady Stokes flows by singularity integral equations based on fundamental solutions, J. Mech., 30, 129-136, (2014) · doi:10.1017/jmech.2013.56
[21] Hsiao, C. H.; Young, D. L., The derivation and application of fundamental solutions for unsteady Stokes equations, J. Mech., 31, 683-691, (2015) · doi:10.1017/jmech.2015.70
[22] Jeffery, G. B., Motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. Lond. A, 102, 161-179, (1922) · JFM 49.0748.02 · doi:10.1098/rspa.1922.0078
[23] Kheifets, S.; Simha, A.; Melin, K.; Li, T.; Raizen, M. G., Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss, Science, 343, 1493-1496, (2014) · doi:10.1126/science.1248091
[24] Kim, S.; Karrila, S. J., Microhydrodynamics, (1991), Butterworth-Heinemann
[25] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics, (1959), Pergamon Press
[26] Lawrence, C. J.; Weinbaum, S., The force on an axisymmetric body in linearized time-dependent motion: a new memory term, J. Fluid Mech., 171, 209-218, (1986) · Zbl 0611.76048 · doi:10.1017/S0022112086001428
[27] Lighthill, J., Helical distributions of Stokeslets, J. Engng Maths, 30, 35-78, (1996) · Zbl 0883.76099 · doi:10.1007/BF00118823
[28] Lubich, C.; Schadle, A., Fast convolution for non-reflecting boundary conditions, SIAM J. Sci. Comput., 24, 1, 161-182, (2002) · Zbl 1013.65113 · doi:10.1137/S1064827501388741
[29] Mazur, P.; Bedeaux, D., A generalization of Faxén theorem to nonsteady motion of a sphere through an incompressible fluid in arbitrary flow, Physica, 76, 235-246, (1974) · doi:10.1016/0031-8914(74)90197-9
[30] Mo, J.; Simha, A.; Kheifets, S.; Raizen, M. G., Testing the Maxwell-Boltzmann distribution using Brownian particles, Opt. Express., 23, 2, 1888-1893, (2015) · doi:10.1364/OE.23.001888
[31] Oseen, C. W., Hydrodynamik, (1927), Akad. Verlagsgesellschaft
[32] Pozrikidis, C., A singularity method for unsteady linearized flow, Phys. Fluids, A1, 1508-1520, (1989) · Zbl 0692.76037 · doi:10.1063/1.857329
[33] Pozrikidis, C., Boundary Integral and Singularity Methods for Linearized Viscous Flow, (1992), Cambridge University Press · Zbl 0772.76005 · doi:10.1017/CBO9780511624124
[34] Saffman, P. G., The lift on a small sphere in a slow shear flow, J. Fluid Mech., 22, 385-400, (1965) · Zbl 0218.76043 · doi:10.1017/S0022112065000824
[35] Sano, T., Unsteady flow past a sphere at low Reynolds number, J. Fluid Mech., 112, 43-441, (1981) · Zbl 0479.76045 · doi:10.1017/S0022112081000499
[36] Segre, G.; Silberberg, A., Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation, J. Fluid Mech., 14, 136-157, (1962) · Zbl 0118.43203 · doi:10.1017/S0022112062001111
[37] Shu, J. J.; Chwang, A. T., Generalized fundamental solutions for unsteady viscous flows, Phys. Rev. E., 63, (2001) · doi:10.1103/PhysRevE.63.051201
[38] Simha, R., Untersuchungen über die Viskosität von Suspensionen und Lösungen, Kolloidn. Z., 76, 16-19, (1936) · doi:10.1007/BF01432457
[39] Smith, S. H., Unsteady Stokes flow in two dimensions, J. Engng Maths, 21, 271-285, (1987) · Zbl 0646.76040 · doi:10.1007/BF00132679
[40] Sneddon, I. N., The Use of Integral Transforms, (1972), McGraw-Hill · Zbl 0237.44001
[41] Stokes, G. G., On the effect of the internal friction of fluids on the motion of pendulums, Trans. Camb. Phil. Soc., 9, 8-106, (1851)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.