×

An efficient algorithm for time-domain acoustic scattering in three dimensions by layer potentials. (English) Zbl 07899017

Summary: In this paper, we develop a simple and fast algorithm for the time-domain acoustic scattering by a sound-soft or an impedance obstacle in three dimensions. We express the solution to the scattering problem by layer potentials, and then a time-domain boundary integral equation is derived. To numerically solve the resulting boundary integral equation, we propose a full discretization scheme by combining the convolution splines with a Galerkin method. In time, we approximate the density in a backward manner in terms of the convolution splines. In space, we project the density at each time onto the space of spherical harmonics, and then use the spatial discretization of a Nyström type on the surface of an obstacle which is homeomorphic to a sphere. A gallery of numerical examples are presented to show the efficiency of our algorithm. The stability, convergence and accuracy of the algorithm are discussed.

MSC:

45A05 Linear integral equations
78A45 Diffraction, scattering
Full Text: DOI

References:

[1] Abboud, T.; Joly, P.; Rodriguez, J.; Terrasse, I., Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains, J. Comput. Phys., 230, 5877-5907, 2011 · Zbl 1416.74081
[2] Atkinson, K. E., The numerical solution of Laplace’s equation in three dimensions, SIAM J. Numer. Anal., 19, 263-274, 1982 · Zbl 0456.65063
[3] Barnett, A.; Greengard, L.; Hagstrom, T., High-order discretization of a stable time-domain integral equation for 3D acoustic scattering, J. Comput. Phys., 402, Article 109047 pp., 2020 · Zbl 1453.65447
[4] Bennett, C. L.; Mieras, H., Time domain integral equation solution for acoustic scattering from fluid targets, J. Acoust. Soc. Am., 69, 1261-1265, 1981 · Zbl 0473.76066
[5] Burman, E.; Fernández, M. A., Analysis of the PSPG method for the transient Stokes’ problem, Comput. Methods Appl. Mech. Eng., 200, 2882-2890, 2011 · Zbl 1230.76022
[6] Colton, D.; Kress, R., Integral Equation Methods in Scattering Theory, 1983, John Wiley & Sons: John Wiley & Sons New York · Zbl 0522.35001
[7] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, 2019, Springer-Verlag: Springer-Verlag Berlin · Zbl 1425.35001
[8] Costabel, M.; Sayas, F.-J., Time-dependent problems with the boundary integral equation method, (Encyclopedia of Computational Mechanics, 2017, John Wiley & Sons: John Wiley & Sons Chichester), 1-24
[9] Davies, P. J.; Duncan, D. B., Stability and convergence of collocation schemes for retarded potential integral equations, SIAM J. Numer. Anal., 42, 1167-1188, 2004 · Zbl 1079.65133
[10] Davies, P. J.; Duncan, D. B., Convolution-in-time approximations of time domain boundary integral equations, SIAM J. Sci. Comput., 35, B43-B61, 2013 · Zbl 1272.65074
[11] Davies, P. J.; Duncan, D. B., Convolution spline approximations for time domain boundary integral equations, J. Integral Equ. Appl., 26, 369-412, 2014 · Zbl 1307.65127
[12] Davis, P. J.; Rabinowitz, P., Methods of Numerical Integration, 1984, Academic Press: Academic Press Orlando, FL · Zbl 0537.65020
[13] Dong, H.; Lai, J.; Li, P., A spectral boundary integral method for the elastic obstacle scattering problem in three dimensions, J. Comput. Phys., 469, Article 111546 pp., 2022 · Zbl 07592143
[14] Epstein, C. L.; Greengard, L.; Hagstrom, T., On the stability of time-domain integral equations for acoustic wave propagation, Discrete Contin. Dyn. Syst., 36, 4367-4382, 2016 · Zbl 1333.65117
[15] Ganesh, M.; Le Louër, F., A high-order algorithm for time-domain scattering in three dimensions, Adv. Comput. Math., 49, 46, 2023 · Zbl 1526.65042
[16] Graham, I. G.; Sloan, I. H., Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in \(\mathbb{R}^3\), Numer. Math., 92, 289-323, 2002 · Zbl 1018.65139
[17] Lubich, Ch., On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations, Numer. Math., 67, 365-389, 1994 · Zbl 0795.65063
[18] Martin, P. A., Time-Domain Scattering, 2021, Cambridge University Press: Cambridge University Press Cambridge · Zbl 1504.35001
[19] Pölz, D.; Schanz, M., Space-time discretized retarded potential boundary integral operators: quadrature for collocation methods, SIAM J. Sci. Comput., 41, A3860-A3886, 2019 · Zbl 1433.78026
[20] Rynne, B. P., Stability and convergence of time marching methods in scattering problems, IMA J. Appl. Math., 35, 297-310, 1985 · Zbl 0616.65146
[21] Sauter, S. A.; Veit, A., A Galerkin method for retarded boundary integral equations with smooth and compactly supported temporal basis functions, Numer. Math., 123, 145-176, 2013 · Zbl 1262.65125
[22] Sayas, F.-J., Retarded Potentials and Time Domain Boundary Integral Equations, 2016, Springer: Springer Cham · Zbl 1346.65047
[23] Wang, H.; Liu, J., On decomposition method for acoustic wave scattering by multiple obstacles, Acta Math. Sci. Ser. B, 33, 1-22, 2013 · Zbl 1289.74090
[24] Widder, D. V., The Laplace Transform, Princeton Mathematical Series, vol. 6, 1941, Princeton University Press: Princeton University Press Princeton · JFM 67.0384.01
[25] Wienert, L., Die numerische Approximation von Randintegraloperatoren für die Helmholtz gleichung im \(\mathbb{R}^3\), 1990, Dissertation, Göttingen · Zbl 0741.65085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.