×

Scanning qubit probe of edge states in a topological insulator. (English) Zbl 1520.81036

Summary: In this work, we propose a novel qubit-based sensor with the ability to characterize topological edge states in low-dimensional systems. A composite system is studied, consisting of a qubit coupled to a topologically nontrivial Su-Schrieffer-Heeger chain between semi-infinite lead channels. This qubit probe utilizes decoherence dynamics which, under a weak-coupling framework, are related to the environment’s local density of states. Qubit decoherence rate measurements along a sample therefore provide the means to extract edge state profiles. The environment’s influence on the qubit’s subspace is captured by an effective projective treatment, leading to an analytical decoherence rate expression. We demonstrate that the scanning qubit probe identifies and yields a complete spatial characterization of the topological edge states within the composite system.

MSC:

81P68 Quantum computation
81S22 Open systems, reduced dynamics, master equations, decoherence
05C70 Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.)
81P47 Quantum channels, fidelity

References:

[1] Chiu, C.-K.; Teo, J. C.Y.; Schnyder, A. P.; Ryu, S., Rev. Mod. Phys., 88, Article 035005 pp. (2016)
[2] Liu, P.; Williams, J. R.; Cha, J. J., Nat. Rev. Mater., 4, 479 (2019)
[3] Asbóth, J. K.; Oroszlány, L.; Pályi, A., A Short Course on Topological Insulators (2016), Springer International Publishing · Zbl 1331.82002
[4] Lv, B.; Xu, N.; Weng, H.; Ma, J.; Richard, P.; Huang, X.; Zhao, L.; Chen, G.; Matt, C.; Bisti, F., Nat. Phys., 11, 724 (2015)
[5] Xu, S.-Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C.-C., Science, 349, 613 (2015)
[6] Lv, B.; Feng, Z.-L.; Xu, Q.-N.; Gao, X.; Ma, J.-Z.; Kong, L.-Y.; Richard, P.; Huang, Y.-B.; Strocov, V.; Fang, C., Nature, 546, 627 (2017)
[7] Ma, J.-Z.; He, J.-B.; Xu, Y.-F.; Lv, B.; Chen, D.; Zhu, W.-L.; Zhang, S.; Kong, L.-Y.; Gao, X.; Rong, L.-Y., Nat. Phys., 14, 349 (2018)
[8] Roushan, P.; Seo, J.; Parker, C. V.; Hor, Y. S.; Hsieh, D.; Qian, D.; Richardella, A.; Hasan, M. Z.; Cava, R. J.; Yazdani, A., Nature, 460, 1106 (2009)
[9] Yin, J.-X.; Pan, S. H.; Zahid Hasan, M., Nat. Rev. Phys., 3, 249 (2021)
[10] Zaimi, M.; Boudreault, C.; Baspin, N.; Delnour, N.; Eleuch, H.; MacKenzie, R.; Hilke, M., Phys. Lett. A, 388, Article 127035 pp. (2021) · Zbl 1508.81857
[11] Yan, B.; Felser, C., Annu. Rev. Condens. Matter Phys., 8, 337 (2017)
[12] van Heck, B.; Cobanera, E.; Ulrich, J.; Hassler, F., Phys. Rev. B, 89, Article 165416 pp. (2014)
[13] Marsi, M., Phys. Status Solidi RRL, 12, Article 1800228 pp. (2018)
[14] Pekker, D.; Hou, C.-Y.; Manucharyan, V. E.; Demler, E., Phys. Rev. Lett., 111, Article 107007 pp. (2013)
[15] Fedorov, A.; Fedichkin, L.; Privman, V., J. Comput. Theor. Nanosci., 1, 132 (2004)
[16] Broadbent, A.; Kashefi, E., Theor. Comput. Sci., 410, 2489 (2009) · Zbl 1172.68018
[17] Zhang, Y.; Deng, H.; Li, Q.; Song, H.; Nie, L., (2019 International Symposium on Theoretical Aspects of Software Engineering (TASE) (2019), IEEE Computer Society: IEEE Computer Society Los Alamitos, CA, USA), 184-191
[18] Burnett, J. J.; Bengtsson, A.; Scigliuzzo, M.; Niepce, D.; Kudra, M.; Delsing, P.; Bylander, J., npj Quantum Inf., 5 (2019)
[19] Lv, B.; Qian, T.; Ding, H., Nat. Rev. Phys., 1, 609 (2019)
[20] Kim, E.; Zhang, X.; Ferreira, V. S.; Banker, J.; Iverson, J. K.; Sipahigil, A.; Bello, M.; González-Tudela, A.; Mirhosseini, M.; Painter, O., Phys. Rev. X, 11, Article 011015 pp. (2021)
[21] Kiczynski, M.; Gorman, S. K.; Geng, H.; Donnelly, M. B.; Chung, Y.; He, Y.; Keizer, J. G.; Simmons, M. Y., Nature, 606, 694 (2022)
[22] Pernet, N.; St-Jean, P.; Solnyshkov, D.; Malpuech, G.; Carlon Zambon, N.; Fontaine, Q.; Real, B.; Jamadi, O.; Lemaître, A.; Morassi, M.; Le Gratiet, L.; Baptiste, T.; Harouri, A.; Sagnes, I.; Amo, A.; Ravets, S.; Bloch, J., Nat. Phys., 18, 678 (2022)
[23] St-Jean, P.; Goblot, V.; Galopin, E.; Lemaître, A.; Ozawa, T.; Gratiet, L. L.; Sagnes, I.; Bloch, J.; Amo, A., Nat. Photonics, 11, 651 (2017)
[24] Wang, X.; Liu, T.; Kockum, A. F.; Li, H.-R.; Nori, F., Phys. Rev. Lett., 126, Article 043602 pp. (2021)
[25] Tang, J.-S.; Nie, W.; Tang, L.; Chen, M.; Su, X.; Lu, Y.; Nori, F.; Xia, K., Phys. Rev. Lett., 128, Article 203602 pp. (2022)
[26] Leefmans, C.; Dutt, A.; Williams, J.; Yuan, L.; Parto, M.; Fan, S.; Nori, F.; Marandi, A., Nat. Phys., 18, 442 (2022)
[27] Nie, W.; Peng, Z. H.; Nori, F.; Liu, Y.-x., Phys. Rev. Lett., 124, Article 023603 pp. (2020)
[28] Ostahie, B.; Aldea, A., Phys. Lett. A, 387, Article 127030 pp. (2021) · Zbl 1509.82080
[29] Marques, A. M.; Dias, R. G., Phys. Rev. B, 95, Article 115443 pp. (2017)
[30] Dangel, F.; Wagner, M.; Cartarius, H.; Main, J.; Wunner, G., Phys. Rev. A, 98, Article 013628 pp. (2018)
[31] Zhu, B.; Lü, R.; Chen, S., Phys. Rev. A, 89, Article 062102 pp. (2014)
[32] Nie, W.; Antezza, M.; Liu, Y.-x.; Nori, F., Phys. Rev. Lett., 127, Article 250402 pp. (2021)
[33] Delplace, P.; Ullmo, D.; Montambaux, G., Phys. Rev. B, 84, Article 195452 pp. (2011)
[34] Datta, S., Quantum Transport: Atom to Transistor (2005), Cambridge University Press · Zbl 1098.81002
[35] Economou, E. N., Green’s Functions in Quantum Physics (1979), Springer: Springer Berlin
[36] Eleuch, H.; Hilke, M.; MacKenzie, R., Phys. Rev. A, 95, Article 062114 pp. (2017)
[37] Kitaev, A., Phys. Usp., 44, 131 (2001)
[38] Yan, Z., Phys. Rev. B, 100, Article 205406 pp. (2019)
[39] Liu, T.; Zhang, Y.-R.; Ai, Q.; Gong, Z.; Kawabata, K.; Ueda, M.; Nori, F., Phys. Rev. Lett., 122, Article 076801 pp. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.