×

Phenomenological and numerical modelling of short fibre reinforced cementitious composites. (English) Zbl 1299.74039

Summary: In this paper, a constitutive model for short fibre reinforced cementitious composites will be presented. This model is based on the St. Venant-Kirchhoff model, which is a special case of a hyperelastic material. This model is refined to include the fibre orientation distribution. Numerical FEM simulations with the developed constitutive model and fracture simulations using the discrete element method are presented. The outcomes of these numerical methods demonstrate how important it is to monitor and further to control the fibre orientation distribution during the manufacturing process. As the manufacturing process might involve casting, as, e.g., in the case of steel fibre reinforced concrete, an outlook on simulations of the manufacturing process in order to predict and to control the fibre orientation distribution is given.

MSC:

74E30 Composite and mixture properties
Full Text: DOI

References:

[1] Advani SG, Tucker CL III (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751-784. doi:10.1122/1.549945 · doi:10.1122/1.549945
[2] Alberty J, Carstensen C, Funken SA (1999) Remarks around 50 lines of matlab: short finite element implementation. Num Alg 20(2-3):117-137. doi:10.1023/A:1019155918070 · Zbl 0938.65129 · doi:10.1023/A:1019155918070
[3] Alberty J, Carstensen C, Funken SA, Klose R (2002) Matlab implementation of the finite element method in elasticity. Computing 69(3):239-263. doi:10.1007/s00607-002-1459-8 · Zbl 1239.74092 · doi:10.1007/s00607-002-1459-8
[4] Altenbach H, Naumenko K, L’vov G, Pilipenko SN (2003) Numerical estimation of the elastic properties of thin-walled structures manufactured from short-fiber-reinforced thermoplastics. Mech Compos Mater 39(3):221-234. doi:10.1023/A:1024566026411 · doi:10.1023/A:1024566026411
[5] Banfill P (2003) The rheology of fresh cement and concrete: a review. In: Proc 11th International Cement Chemistry Congress, Durban
[6] Banfill P (2006) Rheology of fresh cement and concrete. Rheol Rev 18:61-130
[7] Bertolini Cestari C, Invernizzi S, Marzi T, Tulliani JM (2013) The reinforcement of ancient timber-joints with carbon nano-composites. Meccanica. doi:10.1007/s11012-013-9735-6
[8] Bi C, Takahashi S, Fujishiro I (2012) Degeneracy-aware interpolation of 3d diffusion tensor fields. In: Proc. SPIE 8294, Visualization and Data Analysis 2012. doi:10.1117/12.908117
[9] Boulekbache B, Hamrat M, Chemrouk M, Amziane S (2010) Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Constr Build Mater 24(9):1664-1671. doi:10.1016/j.conbuildmat.2010.02.025 · doi:10.1016/j.conbuildmat.2010.02.025
[10] Bronstein IN, Semendjajew KA, Musiol G, Muehlig H (2007) Handbook of mathematics, 5th edn. Springer, New York
[11] Carlsson A (2007) Orientation of fibres in suspensions flowing over a solid surface. Tech. rep, Royal Institute of Technology, KTH Mechanics
[12] Chung ST, Kwon TH (1995) Numerical simulation of fiber orientation in injection molding of short-fiber-reinforced thermoplastics. Polym Eng Sci 35(7):604-618. doi:10.1002/pen.760350707 · doi:10.1002/pen.760350707
[13] Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3(3):72. doi:10.1088/0508-3443/3/3/302 · doi:10.1088/0508-3443/3/3/302
[14] Dou HS, Khoo B, Phan-Thien N, Yeo K, Zheng R (2007) Simulations of fibre orientation in dilute suspensions with front moving in the filling process of a rectangular channel using level-set method. Rheol Acta 46(4):427-447. doi:10.1007/s00397-006-0134-y · doi:10.1007/s00397-006-0134-y
[15] Ehrentraut H, Muschik W (1998) On symmetric irreducible tensors in d-dimensions. ARI 51(2):149-159. doi:10.1007/s007770050048 · doi:10.1007/s007770050048
[16] Eik M, Lõhmus K, Tigasson M, Listak M, Puttonen J, Herrmann H (2013) DC-conductivity testing combined with photometry for measuring fibre orientations in SFRC. J Mater Sci 48(10):3745-3759. doi:10.1007/s10853-013-7174-3 · doi:10.1007/s10853-013-7174-3
[17] Elghobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52(4):309-329. doi:10.1007/BF00936835 · doi:10.1007/BF00936835
[18] Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A 241(1226):376-396. doi:10.1098/rspa.1957.0133 · Zbl 0079.39606 · doi:10.1098/rspa.1957.0133
[19] Ferraris C, de Larrard F, Martys N (2006) Materials Science of Concrete VI, chap. Fresh concrete rheology: recent developments. The National Institute of Standards and Technology (NIST), pp 215-241
[20] Ferraris CF, de Larrard F (1998) Testing and modelling of fresh concrete rheology. Tech. Rep., NIST · Zbl 1293.74015
[21] Gkikas G, Paipetis A (2014) Optimisation and analysis of the reinforcement effect of carbon nanotubes in a typical matrix system. Meccanica, pp 1-18. doi:10.1007/s11012-014-9915-z · Zbl 0973.15024
[22] Gödde L, Strack M, Mark P (2010) Bauteile aus Stahlfaserbeton und stahlfaserverstärktem Stahlbeton. Beton- und Stahlbetonbau 105(2):78-91. doi:10.1002/best.200900067 · doi:10.1002/best.200900067
[23] Gram A (2009) Numerical modelling of self-compacting concrete flow. Ph.D. thesis, Royal Institute of Technology (KTH), Stockholm
[24] Gram A, Silfwerbrand J (2010) Simulation of fresh concrete channel flow: evaluation of rheological parameters. In: 8th fib Ph.D.
[25] Gram A, Silfwerbrand J (2011) Numerical simulation of fresh scc flow: applications. Mater Struct 44(4):805-813. doi:10.1617/s11527-010-9666-9 · doi:10.1617/s11527-010-9666-9
[26] Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete. Ph.D. thesis, Technische Universiteit Delft. http://repository.tudelft.nl/view/ir/uuid:07a817aa-cba1-4c93-bbed-40a5645cf0f1/. Accessed 25 April 2014
[27] Guo Y, Wassgren C, Ketterhagen W, Hancock B, James B, Curtis J (2012) A numerical study of granular shear flows of rod-like particles using the discrete element method. J Fluid Mech 713:1-26. doi:10.1017/jfm.2012.423 · Zbl 1284.76388 · doi:10.1017/jfm.2012.423
[28] Harris SM (2007) Dynamics of semi-flexible fibres in viscous flow. Ph.D. thesis, The University of Leeds, Department of Applied Mathematics
[29] Helbig K, Thomsen L (2005) 75-Plus years of anisotropy in exploration and reservoir seismics: a historical review of concepts and methods. Geophysics 70(6):9ND-23ND. doi:10.1190/1.2122407 · doi:10.1190/1.2122407
[30] Helnwein P (2001) Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors. Comput Methods Appl Mech Eng 190(22-23):2753-2770. doi:10.1016/S0045-7825(00)00263-2 · Zbl 0973.15024 · doi:10.1016/S0045-7825(00)00263-2
[31] Invernizzi S, Lacidogna G, Carpinteri A (2013) Particle-based numerical modeling of ae statistics in disordered materials. Meccanica 48(1):211-220. doi:10.1007/s11012-012-9595-5 · Zbl 1293.74015 · doi:10.1007/s11012-012-9595-5
[32] Jankun-Kelly TJ, Mehta K (2006) Superellipsoid-based, real symmetric traceless tensor glyphs motivated by nematic liquid crystal alignment visualization. In: IEEE Transactions on Visualization and Computer Graphics, Proceedings Visualization/Information Visualization 2006, pp 1197-1204. doi:10.1109/TVCG.2006.181 · Zbl 0079.39606
[33] Jerier JF, Donzé FV, Imbault D, Doremus P (2008) A geometric algorithm for discrete element method to generate composite materials. In: Donzé FV (ed) Discrete element group for Hazard mitigation, Annual Report #4, February 2008. http://people.3srgrenoble.fr/users/fdonze/articles/GED_2007/Rapport_GED_2007_web.pdf. Accessed 25 April 2014
[34] Kononova O, Krasnikovs A, Lapsa V, Kalinka J, Galushchak A (2011) Internal structure formation in high strength fiber concrete during casting. World Acad Sci Eng Technol 78:1864-1867
[35] Krasnikovs A, Zaharevskis V, Kononova O, Lusis V, Galushchak A, Zaleskis E (2012) Fiber concrete properties control by fibers motion investigation in fresh concrete during casting. In: 8th International DAAAM Baltic Conference “INDUSTRIAL ENGINEERING” 19-21 April 2012, Tallinn, Estonia
[36] Lin J, Zhang Q, Zhang K (2010) Rheological properties of fiber suspensions flowing through a curved expansion duct. Polym Eng Sci 50(10):1994-2003. doi:10.1002/pen.21725 · doi:10.1002/pen.21725
[37] Lü N, Cheng Y, Li X, Cheng J (2012) An asymmetrical dynamic model for bridging fiber pull-out of unidirectional composite materials. Meccanica 47(5):1247-1260. doi:10.1007/s11012-011-9509-y · Zbl 1293.74062 · doi:10.1007/s11012-011-9509-y
[38] Martinie L, Rossi P, Roussel N (2010) Rheology of fiber reinforced cementitious materials: classification and prediction. Cem Concr Res 40:226-234. doi:10.1016/j.cemconres.2009.08.032 · doi:10.1016/j.cemconres.2009.08.032
[39] McLeod MA (1997) Injection molding of pregenerated microcomposites. Ph.D. thesis, Virginia Polytechnic Institute and State University http://scholar.lib.vt.edu/theses/available/etd-0898-145634/. Accessed 25 April 2014
[40] Mehrabadi MM, Cowin SC (1990) Eigentensors of linear anisotropic elastic materials. Quart J Mech Appl Math 43(1):15-41 doi:10.1093/qjmam/43.1.15 · Zbl 0698.73002
[41] Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571-574. doi:10.1016/0001-6160(73)90064-3 · doi:10.1016/0001-6160(73)90064-3
[42] Mukhopadhyay AK, Jang S (2008) Using cement paste rheology to predict concrete mix design problems: Technical Report, Texas Transportation Institute · Zbl 0938.65129
[43] Muschik W, Papenfuss C, Ehrentraut H (1996) Concepts of continuum thermodynamics. Kielce University of Technology, Berlin · Zbl 1060.82507
[44] Nabialek J (2011) Modeling of fiber orientation during injection molding process of polymer composites. Kompozyzy 11(4):347-351
[45] Neophytou M, Pourgouri S, Kanellopoulos A, Petrou M, Ioannou I, Georgiou G, Alexandrou A (2010) Determination of the rheological parameters of self-compacting concrete matrix using slump flow test. Appl Rheol 20:12 doi:10.3933/ApplRheol-20-62402
[46] Niceno B Easymesh: a two-dimensional quality mesh generator. http://www-dinma.univ.trieste.it/nirftc/research/easymesh/ Version 1.4. Accessed 25 April 2014
[47] Pardowitz I, Hess S (1980) On the theory of irreversible processes in molecular liquids and liquid crystals, nonequilibrium phenomena associated with the second and fourth rank alignment tensors. Phys A 100(3):540-562. doi:10.1016/0378-4371(80)90166-1 · doi:10.1016/0378-4371(80)90166-1
[48] Park JM, Park SJ (2011) Modeling and simulation of fiber orientation in injection molding of polymer composites. Math Problems Eng. doi:10.1155/2011/105637 · Zbl 1235.74306
[49] Radtke F (2012) Computational modelling of fibre-reinforced cementitious composites: An analysis of discrete and mesh-independent techniques. Ph.D. thesis, Technische Universiteit Delft
[50] Roussel N (2006) Correlation between yield stress and slump: comparison between numerical simulations and concrete rheometers results. Mater Struct 39(4):501-509. doi:10.1617/s11527-005-9035-2 · doi:10.1617/s11527-005-9035-2
[51] Schnell J, Schladitz K, Schuler F (2010) Richtungsanalyse von Fasern in Betonen auf Basis der Computer-Tomographie. Beton- und Stahlbetonbau 105(2):72-77. doi:10.1002/best.200900055 · doi:10.1002/best.200900055
[52] Schöberl J, Gerstmayr J, Gaisbauer R (2003) NETGEN - automatic 3d tetrahedral mesh generator http://www.hpfem.jku.at/netgen/. Accessed 25 April 2014 · Zbl 1269.74051
[53] Steuer H (2004) Thermodynamical properties of a model liquid crystal. Ph.D. thesis, TU Berlin http://opus.kobv.de/tuberlin/volltexte/2004/919/. Accessed 25 April 2014
[54] Suuronen JP, Kallonen A, Eik M, Puttonen J, Serimaa R, Herrmann H (2013) Analysis of short fibres orientation in steel fibre reinforced concrete (SFRC) using x-ray tomography. J Mater Sci 48(3):1358-1367. doi:10.1007/s10853-012-6882-4 · doi:10.1007/s10853-012-6882-4
[55] Tandon GP, Weng GJ (1984) The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polym Compos 5(4):327-333. doi:10.1002/pc.750050413 · doi:10.1002/pc.750050413
[56] Tejchman J, Kozicki J (2010) Experimental and theoretical investigations of steel-fibrous concrete, vol 3, 1st edn. Springer, New York · Zbl 1269.74051 · doi:10.1007/978-3-642-14603-9
[57] Vélez-García GM (2012) Experimental evaluation and simulations of fiber orientation in injection molding of polymers containing short glass fibers. Ph.D. thesis, Virginia Polytechnic Institute and State University. http://scholar.lib.vt.edu/theses/available/etd-04262012-100846/unrestricted/Velez_Garcia_GM_2012.pdf. Accessed 25 April 2014
[58] VerWeyst BE, Tucker CL III, Foss PH, O’Gara JF (1999) Fiber orientation in 3-d injection molded features: prediction and experiment. Int Polym Proc 14(4):409-420
[59] Waldmann L (1960) Diffusionstheorie für polarisierte teilchen. Z Naturforsch A 15a:19-30 · Zbl 0087.44904
[60] Waldmann L (1963) Kinetische theorie des lorentz-gases aus rotierenden molekülen. Z Naturforsch A 18a:1033-1048 · Zbl 0122.22904
[61] Weatherley D (2009) ESyS-Particle v2.0 user’s guide. Earth Systems Science Computational Centre (ESSCC), The University of Queensland. Edited by Dion Weatherley and V. E. Boros · Zbl 1239.74092
[62] Weatherley D, Boros V, Hancock W, Abe S (2010) Scaling benchmark of esys-particle for elastic wave propagation simulations. In: IEEE Sixth International Conference on e-Science (e-Science), pp 277-283. doi:10.1109/eScience.2010.40
[63] Wong GS, Alexander AM, Haskins R, Poole TS, Malone PG, Wakeley L (2001) Portland-cement concrete rheology and workability: final report. Tech. rep, Federal Highway Administration
[64] Yahia A, Khayat K (2003) Applicability of rheological models to high-performance grouts containing supplementary cementitious materials and viscosity enhancing admixture. Mater Struct 36(6):402-412. doi:10.1007/BF02481066 · doi:10.1007/BF02481066
[65] Yasuda K, Kyuto T, Mori N (2004) An experimental study of flow-induced fiber orientation and concentration distributions in a concentrated suspension flow through a slit channel containing a cylinder. Rheol Acta 43(2):137-145. doi:10.1007/s00397-003-0328-5 · doi:10.1007/s00397-003-0328-5
[66] Yilmaz S (2013) An approach for prediction of the elasto-plastic behavior of particulate reinforced composites. Meccanica, pp 1-9. doi:10.1007/s11012-013-9744-5 · Zbl 1293.74363
[67] Zevnik L, Jereb V (2013) Rheology of fresh concrete—influence of superplasticizers. Presentation, Regensburg
[68] Zhang Q, Lin J (2010) Orientation distribution and rheological properties of fiber suspensions flowing through curved expansion and rotating ducts. J Hydrodyn Ser B 22(5, Supplement 1):920-925. doi:10.1016/S1001-6058(10)60053-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.