×

Some new formulas for the products of the Frobenius-Euler polynomials. (English) Zbl 1422.11061

Summary: The main purpose of this paper is, using the generating function methods and summation transform techniques, to establish some new formulas for the products of an arbitrary number of the Frobenius-Euler polynomials and give some illustrative special cases.

MSC:

11B83 Special sequences and polynomials
11B68 Bernoulli and Euler numbers and polynomials
05A19 Combinatorial identities, bijective combinatorics

References:

[1] Frobenius, FG: Über die Bernoullischen Zahlen und die Eulerischen Polynome. Sitzungsber. K. Preußischen Akad. Wissenschaft, Berlin (1910) · Zbl 1264.11013
[2] Araci, S; Acikgoz, M, A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math., 22, 399-406, (2012) · Zbl 1261.05003
[3] Kim, T, Symmetry of power sum polynomials and multivariate fermionic \(p\)-adic invariant integral on \(\mathbb{Z}_{p}\), Russ. J. Math. Phys., 16, 93-96, (2009) · Zbl 1200.11089 · doi:10.1134/S1061920809010063
[4] Araci, S; Acikgoz, M, On the von staudt-clausen’s theorem related to \(q\)-Frobenius-Euler numbers, J. Number Theory, 159, 329-339, (2016) · Zbl 1334.11012 · doi:10.1016/j.jnt.2015.07.025
[5] Kim, DS; Kim, T; Seo, J-J; Komatsu, T, Barnes’ multiple Frobenius-Euler and poly-Bernoulli mixed-type polynomials, Adv. Differ. Equ., 2014, (2014) · Zbl 1417.05008 · doi:10.1186/1687-1847-2014-92
[6] Kim, T, An identity of the symmetry for the Frobenius-Euler polynomials associated with the fermionic \(p\)-adic invariant \(q\)-integrals on \(\mathbb{Z}_{p}\), Rocky Mt. J. Math., 41, 239-247, (2011) · Zbl 1238.11022 · doi:10.1216/RMJ-2011-41-1-239
[7] Kim, T, Identities involving Frobenius-Euler polynomials arising from non-linear differential equations, J. Number Theory, 132, 2854-2865, (2012) · Zbl 1262.11024 · doi:10.1016/j.jnt.2012.05.033
[8] Kim, T; Lee, B; Lee, S-H; Rim, S-H, Some identities for the Frobenius-Euler numbers and polynomials, J. Comput. Anal. Appl., 15, 544-551, (2013) · Zbl 1287.11031
[9] Kim, T; Mansour, T, Umbral calculus associated with Frobenius-type Eulerian polynomials, Russ. J. Math. Phys., 21, 484-493, (2014) · Zbl 1318.11037 · doi:10.1134/S1061920814040062
[10] Simsek, Y; Bayad, A; Lokesha, V, \(q\)-Bernstein polynomials related to \(q\)-Frobenius-Euler polynomials, \(l\)-functions, and \(q\)-Stirling numbers, Math. Methods Appl. Sci., 35, 877-884, (2012) · Zbl 1262.11039 · doi:10.1002/mma.1580
[11] Simsek, Y, Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their applications, Fixed Point Theory Appl., 2013, (2013) · Zbl 1293.11044 · doi:10.1186/1687-1812-2013-87
[12] Cohen, H: Number Theory, Volume II, Analytic and Modern Tools. Graduate Texts in Math., vol. 240. Springer, New York (2007) · Zbl 1119.11002
[13] Nörlund, NE: Vorlesungen über Differenzenrechnung. Springer, Berlin (1924) · JFM 50.0315.02 · doi:10.1007/978-3-642-50824-0
[14] Srivastava, HM, Choi, J: Zeta and \(q\)-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012) · Zbl 1239.33002
[15] Carlitz, L, The product of two Eulerian polynomials, Math. Mag., 36, 37-41, (1963) · Zbl 0114.03406 · doi:10.2307/2688134
[16] Nielsen, N: Traité élémentaire des nombres de Bernoulli. Gauthier-Villars, Paris (1923) · JFM 50.0170.04
[17] Kim, DS; Kim, T, Some new identities of Frobenius-Euler numbers and polynomials, J. Inequal. Appl., 2012, (2012) · Zbl 1332.11025 · doi:10.1186/1029-242X-2012-307
[18] He, Y; Wang, SJ, New formulae of products of the Frobenius-Euler polynomials, J. Inequal. Appl., 2014, (2014) · Zbl 1371.11047 · doi:10.1186/1029-242X-2014-261
[19] Agoh, T; Dilcher, K, Higher-order convolutions for Bernoulli and Euler polynomials, J. Math. Anal. Appl., 419, 1235-1247, (2014) · Zbl 1293.11032 · doi:10.1016/j.jmaa.2014.05.050
[20] Agoh, T, Convolution identities for Bernoulli and Genocchi polynomials, Electron. J. Comb., 21, (2014) · Zbl 1331.11013
[21] Dilcher, K; Vignat, C, General convolution identities for Bernoulli and Euler polynomials, J. Math. Anal. Appl., 435, 1478-1498, (2016) · Zbl 1400.11063 · doi:10.1016/j.jmaa.2015.11.006
[22] He, Y; Kim, T, General convolution identities for Apostol-Bernoulli, Euler and Genocchi polynomials, J. Nonlinear Sci. Appl., 9, 4780-4797, (2016) · Zbl 1400.11064
[23] He, Y; Araci, S; Srivastava, HM, Summation formulas for the products of the Frobenius-Euler polynomials, Ramanujan J., (2016) · Zbl 1434.11059 · doi:10.1007/s11139-016-9802-4
[24] Stanley, RP: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997) · Zbl 0889.05001 · doi:10.1017/CBO9780511805967
[25] Hardy, GH, Wright, EM: An Introduction to the Theory of Numbers, 5th edn. Oxford University Press, New York (1979) · Zbl 0423.10001
[26] Bhatnagar, G, In praise of an elementary identity of Euler, Electron. J. Comb., 18, (2011) · Zbl 1230.33010
[27] Comtet, L: Advanced Combinatorics, the Art of Finite and Infinite Expansions. Reidel, Dordrecht (1974) · Zbl 0283.05001
[28] Gould, HW; Srivastava, HM, Some combinatorial identities associated with the Vandermonde convolution, Appl. Math. Comput., 84, 97-102, (1997) · Zbl 0880.05008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.