×

Stochastic eco-evolutionary model of a prey-predator community. (English) Zbl 1335.60159

Summary: We are interested in the impact of natural selection in a prey-predator community. We introduce an individual-based model of the community that takes into account both prey and predator phenotypes. Our aim is to understand the phenotypic coevolution of prey and predators. The community evolves as a multi-type birth and death process with mutations. We first consider the infinite particle approximation of the process without mutation. In this limit, the process can be approximated by a system of differential equations. We prove the existence of a unique globally asymptotically stable equilibrium under specific conditions on the interaction among prey individuals. When mutations are rare, the community evolves on the mutational scale according to a Markovian jump process. This process describes the successive equilibria of the prey-predator community and extends the polymorphic evolutionary sequence to a coevolutionary framework. We then assume that mutations have a small impact on phenotypes and consider the evolution of monomorphic prey and predator populations. The limit of small mutation steps leads to a system of two differential equations which is a version of the canonical equation of adaptive dynamics for the prey-predator coevolution. We illustrate these different limits with an example of a prey-predator community that takes into account different prey defense mechanisms. We observe through simulations how these various prey strategies impact the community.

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60J85 Applications of branching processes
60J75 Jump processes (MSC2010)
37N25 Dynamical systems in biology
92D25 Population dynamics (general)
92D15 Problems related to evolution

References:

[1] Abrams P (1983) The theory of limiting similarity. Ann Rev Ecol Systemat, pp 359-376
[2] Abrams PA (2000) The evolution of predator-prey interactions: theory and evidence. Ann Rev Ecol Systemat 31(1):79-105 · doi:10.1146/annurev.ecolsys.31.1.79
[3] Abrams PA, Matsuda H (1997) Prey adaptation as a cause of predator-prey cycles. Evolution, pp 1742-1750
[4] Adler LS, Seifert MG, Wink M, Morse GE (2012) Reliance on pollinators predicts defensive chemistry across tobacco species. Ecol Lett 15(10):1140-1148 · doi:10.1111/j.1461-0248.2012.01838.x
[5] Agrawal AA, Hastings AP, Johnson MTJ, Maron JL, Salminen JP (2012) Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338(6103):113-116 · doi:10.1126/science.1225977
[6] Agren J, Schemske DW (1994) Evolution of trichome number in a naturalized population of brassica rapa. Am Nat 143:1-13 · doi:10.1086/285593
[7] Armstrong R, McGehee R (1980) Competitive exclusion. Am Nat 115(2):151-170 · doi:10.1086/283553
[8] Athreya K, Ney P (2004) Branching processes. Dover books on mathematics series. Dover Publications, Mineola
[9] Bakker ES, Ritchie ME, Olff H, Milchunas DG, Knops JM (2006) Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol Lett 9(7):780-788 · doi:10.1111/j.1461-0248.2006.00925.x
[10] Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci 95(14):8113-8118 · doi:10.1073/pnas.95.14.8113
[11] Becerra JX, Noge K, Venable DL (2009) Macroevolutionary chemical escalation in an ancient plant-herbivore arms race. Proc Natl Acad Sci 106(43):18062-18066 · doi:10.1073/pnas.0904456106
[12] Bennett JA, Lamb EG, Hall JC, Cardinal-McTeague WM, Cahill JF (2013) Increased competition does not lead to increased phylogenetic overdispersion in a native grassland. Ecol Lett 16(9):1168-1176 · doi:10.1111/ele.12153
[13] Brännström Å, Johansson J, Loeuille N, Kristensen N, Troost TA, Lambers RHR, Dieckmann U (2012) Modelling the ecology and evolution of communities: a review of past achievements, current efforts, and future promises. Evol Ecol Res 14(5):601-625
[14] Brännström Å, Loeuille N, Loreau M, Dieckmann U (2011) Emergence and maintenance of biodiversity in an evolutionary food-web model. Theor Ecol 4(4):467-478 · doi:10.1007/s12080-010-0089-6
[15] Burns JH, Strauss SY (2011) More closely related species are more ecologically similar in an experimental test. Proc Nat Acad Sci 108(13):5302-5307 · doi:10.1073/pnas.1013003108
[16] Caldarelli G, Higgs PG, McKane AJ (1998) Modelling coevolution in multispecies communities. J Theor Biol 193(2):345-358 · doi:10.1006/jtbi.1998.0706
[17] Champagnat N (2006) A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch Process Appl 116(8):1127-1160 · Zbl 1100.60055 · doi:10.1016/j.spa.2006.01.004
[18] Champagnat N, Ferrière R, Méléard S (2006) Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor Popul Biol 69(3):297-321 · Zbl 1118.92039 · doi:10.1016/j.tpb.2005.10.004
[19] Champagnat N, Jabin PE, Méléard S (2014) Adaptation in a stochastic multi-resources chemostat model. J Math Pures Appl 101(6):755-788 · Zbl 1322.92052 · doi:10.1016/j.matpur.2013.10.003
[20] Champagnat N, Méléard S (2011) Polymorphic evolution sequence and evolutionary branching. Probab Theory Relat Fields 151(1-2):45-94 · Zbl 1225.92040 · doi:10.1007/s00440-010-0292-9
[21] Cottle R, Pang J, Stone R (1992) The linear complementarity problem. Classics in applied mathematics. Society for industrial and applied mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) · Zbl 0757.90078
[22] Courtois EA, Baraloto C, Timothy Paine C, Petronelli P, Blandinieres PA, Stien D, Höuel E, Bessière JM, Chave J (2012) Differences in volatile terpene composition between the bark and leaves of tropical tree species. Phytochemistry 82:81-88 · doi:10.1016/j.phytochem.2012.07.003
[23] Denison RF, Kiers ET, West SA (2003) Darwinian agriculture: when can humans find solutions beyond the reach of natural selection? Quart Rev Biol 78(2):145-168 · doi:10.1086/374951
[24] Dercole F, Ferriere R, Gragnani A, Rinaldi S (2006) Coevolution of slow-fast populations: evolutionary sliding, evolutionary pseudo-equilibria and complex red queen dynamics. Proc R Soc B Biol Sci 273(1589):983-990 · doi:10.1098/rspb.2005.3398
[25] Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 34(5-6):579-612 · Zbl 0845.92013 · doi:10.1007/BF02409751
[26] Dieckmann U, Marrow P, Law R (1995) Evolutionary cycling in predator-prey interactions: population dynamics and the red queen. J Theor Biol 176(1):91-102 · doi:10.1006/jtbi.1995.0179
[27] Doebeli M, Koella JC (1995) Evolution of simple population dynamics. Proc R Soc Lon Ser B Biol Sci 260(1358):119-125 · doi:10.1098/rspb.1995.0068
[28] Drossel B, Higgs PG, McKane AJ (2001) The influence of predator-prey population dynamics on the long-term evolution of food web structure. J Theor Biol 208(1):91-107 · doi:10.1006/jtbi.2000.2203
[29] Durrett R, Mayberry J (2010) Evolution in predator-prey systems. Stoch Process Appl 120(7):1364-1392 · Zbl 1190.92038 · doi:10.1016/j.spa.2010.03.011
[30] Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586-608 · doi:10.2307/2406212
[31] Ethier N, Kurtz T (1986) Markov processes characterization and convergence. Wiley · Zbl 0592.60049
[32] Ferrière R, Dieckmann U, Couvet D (2004) Introduction. In: Evolutionary conservation biology, pp 1-16. Cambridge University Press, Cambridge · Zbl 1228.92058
[33] Ferriere R, Gatto M (1993) Chaotic population dynamics can result from natural selection. Proc R Soc Lond Ser B Biol Sci 251(1330):33-38 · doi:10.1098/rspb.1993.0005
[34] Fournier N, Méléard S (2004) A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann Appl Prob 14(4):1880-1919 · Zbl 1060.92055 · doi:10.1214/105051604000000882
[35] Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10(6):1500-1508 · doi:10.1046/j.1523-1739.1996.10061500.x
[36] Georgelin E, Kylafis G, Loeuille N (2015) Eco-evolutionary dynamics influence the maintenance of antagonistic-mutualistic communities facing disturbances. Adv Ecol Res. doi:10.1016/bs.aecr.2015.01.005
[37] Goh B (1978) Sector stability of a complex ecosystem model. Math Biosci 40(1):157-166 · Zbl 0386.92013 · doi:10.1016/0025-5564(78)90078-0
[38] Graham C, Méléard S (1997) An upper bound of large deviations for a generalized star-shaped loss network. Markov Process Relat Fields 3(2):199-223 · Zbl 0906.60070
[39] Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Quart Rev Biol, pp 283-335
[40] Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge · Zbl 0914.90287 · doi:10.1017/CBO9781139173179
[41] Illius A, Fitzgibbon C (1994) Costs of vigilance in foraging ungulates. Anim Behav 47(2):481-484 · doi:10.1006/anbe.1994.1067
[42] Ives AR, Carpenter SR (2007) Stability and diversity of ecosystems. Science 317(5834):58-62 · doi:10.1126/science.1133258
[43] Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291(5511):2141-2144 · doi:10.1126/science.291.5511.2141
[44] Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94(5):942-952 · doi:10.1111/j.1365-2745.2006.01150.x
[45] Lind E, Borer E, Seabloom E, Adler P, Bakker J, Blumenthal D, Crawley M, Davies K, Firn J, Gruner D (2013) Life-history constraints in grassland plant species: a growth-defence trade-off is the norm. Ecol Lett 16(4):513-521 · doi:10.1111/ele.12078
[46] Loeuille N (2010) Influence of evolution on the stability of ecological communities. Ecol Lett 13(12):1536-1545 · Zbl 1216.05161 · doi:10.1111/j.1461-0248.2010.01545.x
[47] Loeuille N, Barot S, Georgelin E, Kylafis G, Lavigne C (2013) Eco-evolutionary dynamics of agricultural networks: implications for sustainable management. Ecol Netw Agric World 49:339-435 · doi:10.1016/B978-0-12-420002-9.00006-8
[48] Loeuille N, Leibold M (2008) Ecological consequences of evolution in plant defenses in a metacommunity. Theor Populat Biol 74(1):34-45 · Zbl 1210.92055 · doi:10.1016/j.tpb.2008.04.004
[49] Loeuille N, Loreau M (2004) Nutrient enrichment and food chains: can evolution buffer top-down control? Theor Populat Biol 65(3):285-298 · Zbl 1109.92056 · doi:10.1016/j.tpb.2003.12.004
[50] Loeuille N, Loreau M (2005) Evolutionary emergence of size-structured food webs. Proc Natl Acad Sci USA 102(16):5761-5766 · doi:10.1073/pnas.0408424102
[51] Loeuille N, Loreau M (2006) Evolution of body size in food webs: does the energetic equivalence rule hold? Ecol Lett 9(2):171-178 · doi:10.1111/j.1461-0248.2005.00861.x
[52] Loeuille N, Loreau M, Ferrière R (2002) Consequences of plant-herbivore coevolution on the dynamics and functioning of ecosystems. J Theor Biol 217(3):369-381 · doi:10.1006/jtbi.2002.3032
[53] Lotka AJ (1926) Elements of physical biology. Am Math Mon 33(8):426-428 · doi:10.2307/2298330
[54] Marrow P, Dieckmann U, Law R (1996) Evolutionary dynamics of predator-prey systems: an ecological perspective. J Math Biol 34(5-6):556-578 · Zbl 0845.92018 · doi:10.1007/BF02409750
[55] Marrow P, Law R, Cannings C (1992) The coevolution of predator-prey interactions: ESSS and red queen dynamics. Proc R Soc Lon Ser B Biol Sci 250(1328):133-141 · doi:10.1098/rspb.1992.0141
[56] Mauricio R, Rausher MD (1997) Experimental manipulation of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51:1435-1444 · doi:10.2307/2411196
[57] May RM (2001) Stability and complexity in model ecosystems, vol 6. Princeton University Press, Princeton · Zbl 1044.92047
[58] McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395(6704):794-798 · doi:10.1038/27427
[59] Metz J, Nisbet R, Geritz S (1992) How should we define ‘fitness’ for general ecological scenarios? Trends Ecol Evolut 7(6):198-202 · doi:10.1016/0169-5347(92)90073-K
[60] Metz JA, Geritz SA, Meszéna G, Jacobs FJ, Van Heerwaarden J (1996) Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. Stoch Spat Struct Dyn Syst 45:183-231 · Zbl 0972.92024
[61] Meyer JR, Ellner SP, Hairston NG, Jones LE, Yoshida T (2006) Prey evolution on the time scale of predator-prey dynamics revealed by allele-specific quantitative PCR. Proc Natl Acad Sci 103(28):10690-10695 · doi:10.1073/pnas.0600434103
[62] Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: implications for biological control. Trends Ecol Evolut 19(8):417-422 · doi:10.1016/j.tree.2004.05.010
[63] Murray J (2002) Mathematical Biology: I. An introduction. Interdisciplinary applied mathematics. Springer, Berlin · Zbl 1006.92001
[64] Poelman EH, van Loon JJ, Dicke M (2008) Consequences of variation in plant defense for biodiversity at higher trophic levels. Trends Plant Sci 13(10):534-541 · doi:10.1016/j.tplants.2008.08.003
[65] Poorter H, De Jong R (1999) A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytol 143(1):163-176 · doi:10.1046/j.1469-8137.1999.00428.x
[66] Robinson KM, Ingvarsson PK, Jansson S, Albrectsen BR (2012) Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula l.). PLoS ONE 7(5):e37679 · doi:10.1371/journal.pone.0037679
[67] Rossberg A, Matsuda H, Amemiya T, Itoh K (2006) Food webs: experts consuming families of experts. J Theor Biol 241(3):552-563 · Zbl 1447.92537 · doi:10.1016/j.jtbi.2005.12.021
[68] Soulé M (1976) Allozyme variation: its determinants in space and time. In: Molecular Evolution. Sinauer, Sunderland, pp 60-77
[69] Strauss SY (1997) Floral characters link herbivores, pollinators, and plant fitness. Ecology 78(6):1640-1645 · doi:10.1890/0012-9658(1997)078[1640:FCLHPA]2.0.CO;2
[70] Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002) Direct and ecological costs of resistance to herbivory. Trends Ecol Evolut 17(6):278-285 · doi:10.1016/S0169-5347(02)02483-7
[71] Takeuchi Y, Adachi N (1982) Stable equilibrium of systems of generalized volterra type. J Math Anal Appl 88(1):157-169 · Zbl 0491.34048 · doi:10.1016/0022-247X(82)90183-4
[72] Takeuchi Y, Adachi N (1983) Existence and bifurcaction of stable equilibrium in two-prey one-predator communities. Bull Math Biol 45(6):877-900 · Zbl 0524.92025 · doi:10.1007/BF02458820
[73] Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329(5993):853-856 · doi:10.1126/science.1188321
[74] Thrall P, Oakeshott J, Fitt G, Southerton S, Burdon J, Sheppard A, Russell R, Zalucki M, Heino M, Ford Denison R (2011) Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol Appl 4(2):200-215 · doi:10.1111/j.1752-4571.2010.00179.x
[75] Tobias JA, Cornwallis CK, Derryberry EP, Claramunt S, Brumfield RT, Seddon N (2013) Species coexistence and the dynamics of phenotypic evolution in adaptive radiation. Nature 506:359-363 · doi:10.1038/nature12874
[76] Trussell GC, Ewanchuk PJ, Matassa CM (2006) The fear of being eaten reduces energy transfer in a simple food chain. Ecology 87(12):2979-2984 · doi:10.1890/0012-9658(2006)87[2979:TFOBER]2.0.CO;2
[77] Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118:558-560 · JFM 52.0453.03 · doi:10.1038/118558a0
[78] Watanabe S, Ikeda N (1981) Stochastic differential equations and diffusion processes. Elsevier, Amsterdam · Zbl 0495.60005
[79] Yoder JB, Nuismer SL (2010) When does coevolution promote diversification? Am Nat 176(6):802-817 · doi:10.1086/657048
[80] Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG (2003) Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424(6946):303-306 · doi:10.1038/nature01767
[81] Zhang R, Leshak A, Shea K (2012) Decreased structural defence of an invasive thistle under warming. Plant Biol 14(1):249-252
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.