×

Regularities of Pareto sets in low-dimensional practical multi-criteria optimisation problems: analysis, explanation, and exploitation. (English) Zbl 1532.90115

Summary: Many practical optimisation problems have conflicting objectives, which should be addressed by multi-criteria optimisation (MCO), i.e. by determining the set of best compromises, the Pareto set (PS), along with its picture in parameter space (PSPS). In previous work on low-dimensional MCO problems, we have found characteristic topological features of the PS and PSPS, which depend on the dimensionality of the parameter space \(M\) and the objective space \(N\). E.g., \(M = 2\) and \(N = 3\) yields triangles with needle-like extensions. The reasons for these topological features were unknown so far. Here, we show that they are to be expected if all objective functions of the MCO satisfy two conditions: (a) they can be approximated by quadratic functions and (b) one of the eigenvalues of the Hessian matrix evaluated at the function’s minimum is small compared to the other eigenvalues. Objective functions which meet conditions (a) and (b) have a valley-like topology, for which the valley lies in the direction of the eigenvector corresponding to the lowest eigenvalue. The PSPS can be estimated by starting at the minimum of an objective function, following the valley, and combining these lines for all objective functions. The PS is obtained by evaluating the objective functions. We believe that the conditions (a) and (b) are met in many practical problems and discuss an example from molecular modelling. The improved understanding of the features of these MCO problems opens the route for designing methods for swiftly finding estimates of their PS and PSPS.

MSC:

90C29 Multi-objective and goal programming

Software:

Refprop

References:

[1] Pareto V (2014) Manual of political economy. Oxford University Press, Oxford. English translation. First Edition dated of 1906
[2] Ehrgott, M., Multicriteria optimization (2005), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1132.90001
[3] Logist, F.; Houska, B.; Diehl, M.; Van Impe, J., Fast pareto set generation for nonlinear optimal control problems with multiple objectives, Struct Multidiscip Optim, 42, 4, 591-603 (2010) · Zbl 1274.90530 · doi:10.1007/s00158-010-0506-x
[4] Hernandez, JIS, Multi-objective optimization in mixed integer problems: with application to the beam selection optimization problem in IMRT (2012), Berlin: Mensch-und-Buch-Verlag, Berlin
[5] Shirazi, A.; Najafi, B.; Aminyavari, M.; Rinaldi, F.; Taylor, RA, Thermal-economic-environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling, Energy, 69, 212-226 (2014) · doi:10.1016/j.energy.2014.02.071
[6] Najafi, B.; Shirazi, A.; Aminyavari, M.; Rinaldi, F.; Taylor, RA, Exergetic, economic and environmental analyses and multi-objective optimization of an SOFC-gas turbine hybrid cycle coupled with an MSF desalination system, Desalination, 334, 1, 46-59 (2014) · doi:10.1016/j.desal.2013.11.039
[7] Ganesan, T.; Elamvazuthi, I.; Vasant, P., Multiobjective design optimization of a nano-CMOS voltage-controlled oscillator using game theoretic-differential evolution, Appl Soft Comput, 32, 293-299 (2015) · doi:10.1016/j.asoc.2015.03.016
[8] Clark, PA; Westerberg, AW, Optimization for design problems having more than one objective, Comput Chem Eng, 7, 4, 259-278 (1983) · doi:10.1016/0098-1354(83)80015-5
[9] Bhaskar, V.; Gupta, SK; Ray, AK, Applications of multiobjective optimization in chemical engineering, Rev Chem Eng, 16, 1, 1-54 (2000) · doi:10.1515/REVCE.2000.16.1.1
[10] Rangaiah GP, Petriciolet A (2013) Multi-objective optimization in chemical engineering. Developments and applications/edited by Gade Pandu Rangaiah, Adrián Bonilla-Petriciolet
[11] Höller, J.; Bickert, P.; Schwartz, P.; von Kurnatowski, M.; Kerber, J.; Künzle, N.; Lorenz, H-M; Asprion, N.; Blagov, S.; Bortz, M., Parameter estimation strategies in thermodynamics., ChemEngineering, 3, 2, 56 (2019) · doi:10.3390/chemengineering3020056
[12] von Kurnatowski, M.; Bortz, M.; Scherrer, A.; Hoffmann, A.; Lorenz, H-M; Caraucan, M.; Grützner, T.; Künzle, N.; Küfer, K-H, Multi-criteria optimization of an industrial world-scale process, Chem Ing Tec, 89, 11, 1471-1478 (2017) · doi:10.1002/cite.201700016
[13] Bortz, M.; Burger, J.; Asprion, N.; Blagov, S.; Böttcher, R.; Nowak, U.; Scheithauer, A.; Welke, R.; Küfer, K-H; Hasse, H., Multi-criteria optimization in chemical process design and decision support by navigation on pareto sets, Comput Chem Eng, 60, 354-363 (2014) · doi:10.1016/j.compchemeng.2013.09.015
[14] Kulkarni, A.; Bortz, M.; Küfer, K-H; Kohns, M.; Hasse, H., Multicriteria optimization of molecular models of water using a reduced units approach, J Chem Theory Comput, 16, 8, 5127-5138 (2020) · doi:10.1021/acs.jctc.0c00301
[15] Stöbener, K.; Klein, P.; Reiser, S.; Horsch, M.; Küfer, K-H; Hasse, H., Multicriteria optimization of molecular force fields by Pareto approach, Fluid Phase Equilib, 373, 100-108 (2014) · doi:10.1016/j.fluid.2014.04.009
[16] Stöbener, K.; Klein, P.; Horsch, M.; Küfer, K-H; Hasse, H., Parametrization of two-center lennard-jones plus point-quadrupole force field models by multicriteria optimization, Fluid Phase Equilib, 411, 33-42 (2016) · doi:10.1016/j.fluid.2015.11.028
[17] Werth, S.; Stöbener, K.; Klein, P.; Küfer, K-H; Horsch, M.; Hasse, H., Molecular modelling and simulation of the surface tension of real quadrupolar fluids, Chem Eng Sci, 121, 110-117 (2015) · doi:10.1016/j.ces.2014.08.035
[18] Kohns, M.; Schappals, M.; Horsch, M.; Hasse, H., Activities in aqueous solutions of the alkali halide salts from molecular simulation, J Chem Eng Data, 61, 12, 4068-4076 (2016) · doi:10.1021/acs.jced.6b00544
[19] Rehner, P.; Gross, J., Multiobjective optimization of PCP-SAFT parameters for water and alcohols using surface tension data, J Chem Eng Data, 65, 12, 5698-5707 (2020) · doi:10.1021/acs.jced.0c00684
[20] Graham EJ (2020) Development of advanced thermodynamic models for \(\text{CO}_2\) absorption: From numerical methods to process modelling
[21] Forte, E.; von Harbou, E.; Burger, J.; Asprion, N.; Bortz, M., Optimal design of laboratory and pilot-plant experiments using multiobjective optimization, Chem Ing Tec, 89, 5, 645-654 (2017) · doi:10.1002/cite.201600104
[22] Forte, E.; Kulkarni, A.; Burger, J.; Bortz, M.; Küfer, K-H; Hasse, H., Multi-criteria optimization for parametrizing excess gibbs energy models, Fluid Phase Equilib, 522 (2020) · doi:10.1016/j.fluid.2020.112676
[23] Augusto, OB; Bennis, F.; Caro, S., Multiobjective optimization involving quadratic functions, J Optim, 2014 (2014) · Zbl 1460.90162
[24] Forte, E.; Burger, J.; Langenbach, K.; Hasse, H.; Bortz, M., Multi-criteria optimization for parameterization of saft-type equations of state for water, AIChE J, 64, 1, 226-237 (2018) · doi:10.1002/aic.15857
[25] Bortz, M.; Burger, J.; von Harbou, E.; Klein, M.; Schwientek, J.; Asprion, N.; Böttcher, R.; Küfer, K-H; Hasse, H., Efficient approach for calculating pareto boundaries under uncertainties in chemical process design, Ind Eng Chem Res, 56, 44, 12672-12681 (2017) · doi:10.1021/acs.iecr.7b02539
[26] Burger, J.; Asprion, N.; Blagov, S.; Böttcher, R.; Nowak, U.; Bortz, M.; Welke, R.; Küfer, K-H; Hasse, H., Multi-objective optimization and decision support in process engineering-implementation and application, Chem Ing Tec, 86, 7, 1065-1072 (2014) · doi:10.1002/cite.201400008
[27] Chiu, W-Y; Hsieh, J-T; Chen, C-M, Pareto optimal demand response based on energy costs and load factor in smart grid, IEEE Trans Industr Inf, 16, 3, 1811-1822 (2019) · doi:10.1109/TII.2019.2928520
[28] Matviychuk, Y.; Steimers, E.; von Harbou, E.; Holland, DJ, Bayesian approach for automated quantitative analysis of benchtop NMR data, J Magn Reson, 319 (2020) · doi:10.1016/j.jmr.2020.106814
[29] Branke J, Deb K, Dierolf H, Osswald M (2004) Finding knees in multi-objective optimization. In: International conference on parallel problem solving from nature, pp 722-731 . Springer
[30] Berendsen, HJC; Grigera, JR; Straatsma, TP, The missing term in effective pair potentials, J Phys Chem, 91, 24, 6269-6271 (1987) · doi:10.1021/j100308a038
[31] Lemmon EW, Bell IH, Huber ML, McLinden MO (2018) NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, Version 10.0, National Institute of Standards and Technology (2018). doi:10.18434/T4JS3C
[32] Wagner, W.; Pruß, A., The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J Phys Chem Ref Data, 31, 2, 387-535 (2002) · doi:10.1063/1.1461829
[33] Merker, T.; Vrabec, J.; Hasse, H., Engineering molecular models: efficient parameterization procedure and cyclohexanol as case study, Soft Mater, 10, 1-3, 3-25 (2012) · doi:10.1080/1539445X.2011.599695
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.