×

Porous-ductile fracture in thermo-elasto-plastic solids with contact applications. (English) Zbl 1462.74143

Summary: Industrial forming processes depend on several physical effects, including large deformation thermomechanical damage, localized near the contact zone of the forming tools. The main challenge in this process relies on the detailed knowledge of the desired thermoplastic effects at finite strains and the undesired initiation of macro-cracks. For the numerical solution of this problem, a regularized sharp crack surface in the framework of a phase-field approach is combined here with a modified, thermomechanical Gurson-Tvergaard-Needelman GTN-type plasticity model, such that we obtain a thermodynamically consistent framework. This allows to adapt this highly complex multi-field model using variationally consistent Mortar contact formulations in a straightforward manner. Eventually, the proposed approach is tested on complex three-dimensional geometries, emanating from industrial relevant forming processes.

MSC:

74R20 Anelastic fracture and damage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74F05 Thermal effects in solid mechanics
74M15 Contact in solid mechanics
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
Full Text: DOI

References:

[1] Aldakheel F (2016) Mechanics of nonlocal dissipative solids: gradient plasticity and phase field modeling of ductile fracture. Ph.D. thesis, University of Stuttgart
[2] Aldakheel, F., Micromorphic approach for gradient-extended thermo-elastic-plastic solids in the logarithmic strain space, Contin Mech Thermodyn, 29, 6, 1207-1217 (2017) · Zbl 1392.74069 · doi:10.1007/s00161-017-0571-0
[3] Aldakheel, F.; Hudobivnik, B.; Hussein, A.; Wriggers, P., Phase-field modeling of brittle fracture using an efficient virtual element scheme, Comput Methods Appl Mech Eng, 341, 443-466 (2018) · Zbl 1440.74352 · doi:10.1016/j.cma.2018.07.008
[4] Aldakheel, F.; Hudobivnik, B.; Wriggers, P., Virtual elements for finite thermo-plasticity problems, Comput Mech, 64, 5, 1347-1360 (2019) · Zbl 1464.74382 · doi:10.1007/s00466-019-01714-2
[5] Aldakheel, F.; Mauthe, S.; Miehe, C., Towards phase field modeling of ductile fracture in gradient-extended elastic-plastic solids, Proc Appl Math Mech, 14, 411-412 (2014) · doi:10.1002/pamm.201410193
[6] Aldakheel, F.; Miehe, C., Coupled thermomechanical response of gradient plasticity, Int J Plast, 91, 1-24 (2017) · doi:10.1016/j.ijplas.2017.02.007
[7] Aldakheel, F.; Wriggers, P.; Miehe, C., A modified gurson-type plasticity model at finite strains: formulation, numerical analysis and phase-field coupling, Comput Mech, 62, 815-833 (2018) · Zbl 1459.74024 · doi:10.1007/s00466-017-1530-0
[8] Ambati, M.; Gerasimov, T.; De Lorenzis, L., Phase-field modeling of ductile fracture, Comput Mech, 55, 1017-1040 (2015) · Zbl 1329.74018 · doi:10.1007/s00466-015-1151-4
[9] Amor, H.; Marigo, JJ; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments, J Mech Phys Solids, 57, 1209-1229 (2009) · Zbl 1426.74257 · doi:10.1016/j.jmps.2009.04.011
[10] Bai, Y.; Wierzbicki, T., A new model of metal plasticity and fracture with pressure and lode dependence, Int J Plast, 24, 1071-1096 (2008) · Zbl 1421.74016 · doi:10.1016/j.ijplas.2007.09.004
[11] Besson, J., Continuum models of ductile fracture: a review, Int J Damage Mech, 19, 3-52 (2010) · doi:10.1177/1056789509103482
[12] Borden, MJ; Hughes, TJR; Landis, CM; Anvari, A.; Lee, IJ, A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput Methods Appl Mech Eng, 312, 130-166 (2016) · Zbl 1439.74343 · doi:10.1016/j.cma.2016.09.005
[13] Borden, MJ; Hughes, TJR; Landis, CM; Verhoosel, CV, A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework, Comput Methods Appl Mech Eng, 273, 100-118 (2014) · Zbl 1296.74098 · doi:10.1016/j.cma.2014.01.016
[14] Bornemann, PB; Cirak, F., A subdivision-based implementation of the hierarchical b-spline finite element method, Comput Methods Appl Mech Eng, 253, 584-598 (2013) · Zbl 1297.65147 · doi:10.1016/j.cma.2012.06.023
[15] Bryant, EC; Sun, W., A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics, Comput Methods Appl Mech Eng, 342, 561-584 (2018) · Zbl 1440.74218 · doi:10.1016/j.cma.2018.08.008
[16] Cottrell, JA; Hughes, TJR; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA (2009), New York: Wiley, New York · Zbl 1378.65009
[17] De Lorenzis, L.; Temizer, İ.; Wriggers, P.; Zavarise, G., A large deformation frictional contact formulation using NURBS-based isogeometric analysis, Int J Numer Methods Eng, 87, 13, 1278-1300 (2011) · Zbl 1242.74104
[18] De Lorenzis, L.; Wriggers, P.; Zavarise, G., A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method, Comput Mech, 49, 1, 1-20 (2012) · Zbl 1356.74146 · doi:10.1007/s00466-011-0623-4
[19] Dittmann M (2017) Isogeometric analysis and hierarchical refinement for multi-field contact problems. Ph.D. thesis, University of Siegen
[20] Dittmann, M.; Aldakheel, F.; Schulte, J.; Schmidt, F.; Krüger, M.; Wriggers, P.; Hesch, C., Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids, Comput Methods Appl Mech Eng (2019) · Zbl 1442.74040 · doi:10.1016/j.cma.2019.112730
[21] Dittmann, M.; Aldakheel, F.; Schulte, J.; Wriggers, P.; Hesch, C., Variational phase-field formulation of non-linear ductile fracture, Comput Methods Appl Mech Eng, 342, 71-94 (2018) · Zbl 1440.74025 · doi:10.1016/j.cma.2018.07.029
[22] Dittmann, M.; Franke, M.; Temizer, İ.; Hesch, C., Isogeometric analysis and thermomechanical mortar contact problems, Comput Methods Appl Mech Eng, 274, 192-212 (2014) · Zbl 1296.74072 · doi:10.1016/j.cma.2014.02.012
[23] Dittmann M, Hesch C, Schulte J, Aldakheel F, Franke M (2017) Multi-field modelling and simulation of large deformation ductile fracture. In: Proceedings of the XIV international conference on computational plasticity. Fundamentals and applications, pp 556-567
[24] Dittmann, M.; Krüger, M.; Schmidt, F.; Schuß, S.; Hesch, C., Variational modeling of thermomechanical fracture and anisotropic frictional mortar contact problems with adhesion, Comput Mech, 63, 3, 571-591 (2018) · Zbl 1469.74097 · doi:10.1007/s00466-018-1610-9
[25] Farah, P.; Popp, A.; Wall, WA, Segment-based vs. element-based integration for mortar methods in computational contact mechanics, Comput Mech, 55, 1, 209-228 (2015) · Zbl 1311.74120 · doi:10.1007/s00466-014-1093-2
[26] Forest, S.; Aifantis, EC, Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua, Int J Solids Struct, 47, 3367-3376 (2010) · Zbl 1203.74011 · doi:10.1016/j.ijsolstr.2010.07.009
[27] Gurson AL (1975) Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and coalescence. Ph.D. thesis, Division of Engineering, Brown University
[28] Gurson, AL, Continuum theory of ductile rupture by void nucleation and growth, part I—yield criteria and flow rules for porous ductile media, J Eng Mater Technol, 99, 2-15 (1977) · doi:10.1115/1.3443401
[29] Heider, Y.; Markert, B., A phase-field modeling approach of hydraulic fracture in saturated porous media, Mech Res Commun, 80, 38-46 (2017) · doi:10.1016/j.mechrescom.2016.07.002
[30] Heider, Y.; Reiche, S.; Siebert, P.; Markert, B., Modeling of hydraulic fracturing using a porous-media phase-field approach with reference to experimental data, Eng Fract Mech, 202, 116-134 (2018) · doi:10.1016/j.engfracmech.2018.09.010
[31] Hesch, C.; Betsch, P., Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration, Comput Mech, 48, 4, 461-475 (2011) · Zbl 1398.74335 · doi:10.1007/s00466-011-0583-8
[32] Hesch, C.; Franke, M.; Dittmann, M.; Temizer, İ., Hierarchical NURBS and a higher-order phase-field approach to fracture for finite-deformation contact problems, Comput Methods Appl Mech Eng, 301, 242-258 (2016) · Zbl 1425.74341 · doi:10.1016/j.cma.2015.12.011
[33] Hesch, C.; Gil, AJ; Ortigosa, R.; Dittmann, M.; Bilgen, C.; Betsch, P.; Franke, M.; Janz, A.; Weinberg, K., A framework for polyconvex large strain phase-field methods to fracture, Comput Methods Appl Mech Eng, 317, 649-683 (2017) · Zbl 1439.74026 · doi:10.1016/j.cma.2016.12.035
[34] Hesch, C.; Schuß, S.; Dittmann, M.; Franke, M.; Weinberg, K., Isogeometric analysis and hierarchical refinement for higher-order phase-field models, Comput Methods Appl Mech Eng, 303, 185-207 (2016) · Zbl 1425.74464 · doi:10.1016/j.cma.2016.01.022
[35] Hesch, C.; Weinberg, K., Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture, Int J Numer Methods Eng, 99, 12, 906-924 (2014) · Zbl 1352.74021 · doi:10.1002/nme.4709
[36] Hüeber, S.; Wohlmuth, BI, Thermo-mechanical contact problems on non-matching meshes, Comput Methods Appl Mech Eng, 198, 1338-1350 (2009) · Zbl 1227.74072 · doi:10.1016/j.cma.2008.11.022
[37] Huespe, A.; Needleman, A.; Oliver, J.; Sánchez, A finite strain, finite band method for modeling ductile fracture, Int J Plast, 28, 53-69 (2012) · doi:10.1016/j.ijplas.2011.05.010
[38] Kuhn, C.; Schlüter, A.; Müller, R., On degradation functions in phase field fracture models, Comput Mater Sci, 108, 374-384 (2015) · doi:10.1016/j.commatsci.2015.05.034
[39] Leblond, JB; Perrin, G.; Devaus, J., An improved gurson-type model for hardenable ductile metals, Eur J Mech A/Solids, 14, 499-527 (1995) · Zbl 0840.73021
[40] Lehmann, T.; Blix, U., On the coupled thermo-mechanical process in the necking problem, Int J Plast, 1, 175-188 (1985) · doi:10.1016/0749-6419(85)90028-2
[41] Li, H.; Fu, MW; Lu, J.; Yang, H., Ductile fracture: experiments and computations, Int J Plast, 27, 147-180 (2011) · doi:10.1016/j.ijplas.2010.04.001
[42] Miehe, C.; Aldakheel, F.; Raina, A., Phase field modeling of ductile fracture at finite strains. A variational gradient-extended plasticity-damage theory, Int J Plast, 84, 1-32 (2016) · doi:10.1016/j.ijplas.2016.04.011
[43] Miehe, C.; Aldakheel, F.; Teichtmeister, S., Phase-field modeling of ductile fracture at finite strains: a robust variational-based numerical implementation of a gradient-extended theory by micromorphic regularization, Int J Numer Methods Eng, 111, 9, 816-863 (2017) · Zbl 07867126 · doi:10.1002/nme.5484
[44] Miehe, C.; Hofacker, M.; Schänzel, L-M; Aldakheel, F., Phase field modeling of fracture in multi-physics problems. Part II. Brittle-to-ductile failure mode transition and crack propagation in thermo-elastic-plastic solids, Comput Methods Appl Mech Eng, 294, 486-522 (2015) · Zbl 1423.74837 · doi:10.1016/j.cma.2014.11.017
[45] Miehe, C.; Kienle, D.; Aldakheel, F.; Teichtmeister, S., Phase field modeling of fracture in porous plasticity: a variational gradient-extended eulerian framework for the macroscopic analysis of ductile failure, Comput Methods Appl Mech Eng, 312, 3-50 (2016) · Zbl 1439.74112 · doi:10.1016/j.cma.2016.09.028
[46] Miehe, C.; Schänzel, L.; Ulmer, H., Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput Methods Appl Mech Eng, 294, 449-485 (2015) · Zbl 1423.74838 · doi:10.1016/j.cma.2014.11.016
[47] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations, Int J Numer Methods Eng, 83, 1273-1311 (2010) · Zbl 1202.74014 · doi:10.1002/nme.2861
[48] Nahshon, K.; Hutchinson, JW, Modification of the gurson model for shear failure, Eur J Mech A/Solids, 27, 1-17 (2008) · Zbl 1129.74041 · doi:10.1016/j.euromechsol.2007.08.002
[49] Needleman, A.; Tvergaard, V., An analysis of ductile rupture in notched bars, J Mech Phys Solids, 32, 461-490 (1984) · doi:10.1016/0022-5096(84)90031-0
[50] Paggi, M.; Reinoso, J., Revisiting the problem of a crack impinging on an interface:a modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model, Comput Methods Appl Mech Eng, 321, 145-172 (2017) · Zbl 1439.74367 · doi:10.1016/j.cma.2017.04.004
[51] Puso, MA; Laursen, TA, A mortar segment-to-segment frictional contact method for large deformations, Comput Methods Appl Mech Eng, 193, 45-47, 4891-4913 (2004) · Zbl 1112.74535 · doi:10.1016/j.cma.2004.06.001
[52] Reusch, F.; Svendsen, B.; Klingbeil, D., Local and non-local gurson-based ductile damage and failure modelling at large deformation, Eur J Mech A/Solids, 22, 779-792 (2003) · Zbl 1032.74510 · doi:10.1016/S0997-7538(03)00070-6
[53] Seitz A (2019) Computational methods for thermo-elasto-plastic contact. Ph.D. thesis, University of Munich
[54] Seitz, A.; Wall, WA; Popp, A., A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation employing non-smooth nonlinear complementarity functions, Adv Model Simul Eng Sci, 5, 5, 1-37 (2018)
[55] Simo, JC; Miehe, C., Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation, Comput Methods Appl Mech Eng, 98, 41-104 (1992) · Zbl 0764.73088 · doi:10.1016/0045-7825(92)90170-O
[56] Teichtmeister, S.; Kienle, D.; Aldakheel, F.; Keip, M-A, Phase field modeling of fracture in anisotropic brittle solids, Int J Non-Linear Mech, 97, 1-21 (2017) · doi:10.1016/j.ijnonlinmec.2017.06.018
[57] Temizer, İ.; Hesch, C., Hierarchical NURBS in frictionless contact, Comput Methods Appl Mech Eng, 299, 161-186 (2016) · Zbl 1425.74493 · doi:10.1016/j.cma.2015.11.006
[58] Temizer, İ.; Wriggers, P.; Hughes, TJR, Contact treatment in isogeometric analysis with NURBS, Comput Methods Appl Mech Eng, 200, 9-12, 1100-1112 (2011) · Zbl 1225.74126 · doi:10.1016/j.cma.2010.11.020
[59] Tvergaard, V., On localization in ductile materials containing spherical voids, Int J Fract, 18, 237-252 (1982)
[60] Tvergaard, V.; Needleman, A., Analysis of the cup-cone fracture in a round tensile bar, Acta Metall, 32, 157-169 (1984) · doi:10.1016/0001-6160(84)90213-X
[61] Verhoosel, CV; de Borst, R., A phase-field model for cohesive fracture, Int J Numer Methods Eng, 96, 43-62 (2013) · Zbl 1352.74029 · doi:10.1002/nme.4553
[62] Voyiadjis, ZG; Faghihi, D., Thermo-mechanical strain gradient plasticity with energetic and dissipative length scales, Int J Plast, 30-31, 218-247 (2012) · doi:10.1016/j.ijplas.2011.10.007
[63] Wcislo, B.; Pamin, J., Local and non-local thermomechanical modeling of elastic-plastic materials undergoing large strains, Int J Numer Methods Eng, 109, 102-124 (2016) · Zbl 07874347 · doi:10.1002/nme.5280
[64] Wriggers, P.; Miehe, C.; Kleiber, M.; Simo, JC, A thermomechanical approach to the necking problem, Int J Numer Methods Eng, 33, 869-883 (1992) · Zbl 0760.73070 · doi:10.1002/nme.1620330413
[65] Xue, Z.; Pontin, MG; Zok, FW; Hutchinson, JW, Calibration procedures for a computational model of ductile fracture, Eng Fract Mech, 77, 492-509 (2010) · doi:10.1016/j.engfracmech.2009.10.007
[66] Zdebel, U.; Lehmann, Th, Some theoretical considerations and experimental investigations on a constitutive law in thermoplasticity, Int J Plast, 3, 369-389 (1987) · Zbl 0628.73129 · doi:10.1016/0749-6419(87)90009-X
[67] Zhang, X.; Vignes, C.; Sloan, SW; Sheng, D., Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale, Comput Mech, 59, 5, 737-752 (2017) · doi:10.1007/s00466-017-1373-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.