×

Two-weight \(L^p \to L^q\) bounds for positive dyadic operators in the case \(0 < q < 1 \leq p < \infty\). (English) Zbl 1439.42028

Summary: Let \(\sigma, \omega\) be measures on \(\mathbb{R}^d\), and let \(\{\lambda_Q\}_{Q\in\mathcal{D}}\) be a family of non-negative reals indexed by the collection \(\mathcal{D}\) of dyadic cubes in \(\mathbb{R}^d\). We characterize the two-weight norm inequality \[\|T_{\lambda}(f\sigma)\|_{L^q(\omega)}\le C \|f\|_{L^p(\sigma)}\quad \text{for every }f\in L^p(\sigma),\] for the positive dyadic operator \[T_{\lambda}(f\sigma):=\sum\limits_{Q\in\mathcal{D}}\lambda_Q\bigg(\frac{1}{\sigma(Q)}\int_Q f\,\text{d}\sigma\bigg)1_Q\] in the difficult range \(0<q<1\le p<\infty\) of integrability exponents. This range of the exponents \(p\), \(q\) appeared recently in applications to nonlinear PDE, which was one of the motivations for our study.
Furthermore, we introduce a scale of discrete Wolff potential conditions that depends monotonically on an integrability parameter, and prove that such conditions are necessary (but not sufficient) for small parameters, and sufficient (but not necessary) for large parameters.
Our characterization applies to Riesz potentials \[I_{\alpha}(f \sigma) = (-\Delta)^{-\alpha/2}(f\sigma),\quad0<\alpha<d,\] since it is known that they can be controlled by model dyadic operators. The weighted norm inequality for Riesz potentials in this range of \(p\), \(q\) has been characterized previously only in the special case where \(\sigma\) is a Lebesgue measure.

MSC:

42B25 Maximal functions, Littlewood-Paley theory
42B35 Function spaces arising in harmonic analysis
47G40 Potential operators
46A16 Not locally convex spaces (metrizable topological linear spaces, locally bounded spaces, quasi-Banach spaces, etc.)

References:

[1] DAVIDR. ADAMSandLARSINGEHEDBERG,Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996.http://dx.doi.org/10.1007/ 978-3-662-03282-4.MR1411441
[2] DATCAOandIGORE. VERBITSKY,Nonlinear elliptic equations and intrinsic potentials of Wolff type, J. Funct. Anal.272(2017), no. 1, 112-165.http://dx.doi.org/10.1016/j.jfa.2016. 10.010.MR3567503 · Zbl 1376.35080
[3] CARMECASCANTEandJOAQUINM. ORTEGA,Two-weight norm inequalities for vectorvalued operators, Mathematika63(2017), no. 1, 72-91.http://dx.doi.org/10.1112/ S0025579316000176.MR3610006 · Zbl 1373.47029
[4] CARMECASCANTE,JOAQUINM. ORTEGA, andIGORE. VERBITSKY,Nonlinear potentials and two weight trace inequalities for general dyadic and radial kernels, Indiana Univ. Math. J.53 (2004), no. 3, 845-882.http://dx.doi.org/10.1512/iumj.2004.53.2443.MR2086703 · Zbl 1077.31007
[5] ,OnLp-Lqtrace inequalities, J. London Math. Soc. (2)74(2006), no. 2, 497-511. http://dx.doi.org/10.1112/S0024610706023064.MR2269591 · Zbl 1109.46036
[6] WILLIAMS. COHNandIGORE. VERBITSKY,Factorization of tent spaces and Hankel operators, J. Funct. Anal.175(2000), no. 2, 308-329.http://dx.doi.org/10.1006/jfan.2000. 3589.MR1780479 · Zbl 0968.46022
[7] MICHAELFRAZIERandBJORN¨JAWERTH,A discrete transform and decompositions of distribution spaces, J. Funct. Anal.93(1990), no. 1, 34-170.http://dx.doi.org/10.1016/ 0022-1236(90)90137-A.MR1070037 · Zbl 0716.46031
[8] TIMOS. H ¨ANNINEN,Two-weight inequality for operator-valued positive dyadic operators by parallel stopping cubes, Israel J. Math.219(2017), no. 1, 71-114.http://dx.doi.org/10.1007/ s11856-017-1474-2.MR3642016 · Zbl 1369.47050
[9] TIMOS. H ¨ANNINEN,TUOMASP. HYTONEN¨, andKANGWEILI,Two-weightLp-Lqbounds for positive dyadic operators:Unified approach top≤qandp > q, Potential Anal.45(2016), no. 3, 579-608.http://dx.doi.org/10.1007/s11118-016-9559-9.MR3554405 · Zbl 1357.42017
[10] TUOMASP. HYTONEN¨,TheA2theorem: remarks and complements, Harmonic Analysis and Partial Differential Equations, Contemp. Math., vol. 612, Amer. Math. Soc., Providence, RI, 2014, pp. 91-106, available athttp://arxiv.org/abs/arXiv:1212.3840[math.CA].http:// dx.doi.org/10.1090/conm/612/12226.MR3204859
[11] TUOMOKUUSIandGIUSEPPEMINGIONE,Guide to nonlinear potential estimates, Bull. Math. Sci.4(2014), no. 1, 1-82.http://dx.doi.org/10.1007/s13373-013-0048-9.MR3174278 · Zbl 1315.35095
[12] MICHAELT. LACEY,ERICT. SAWYER, andIGNACIOURIARTE-TUERO,Two weight inequalities for discrete positive operators(2009), preprint, available athttp://arxiv.org/abs/ arXiv:0911.3437[math.CA].
[13] JINGGUOLAI,A new two weight estimates for a vector-valued positive operator(2015), preprint, available athttp://arxiv.org/abs/arXiv:1503.06778.
[14] BERNARDMAUREY,Th´eor‘emes de factorisation pour les op´erateurs lin´eaires ‘a valeurs dans les espacesLp, Ast´erisque, vol. 11, Soci´et´e Math´ematique de France, Paris, 1974 (French, with an English summary).MR0344931 · Zbl 0278.46028
[15] VLADIMIRG. MAZ’YA,Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Second, revised and augmented edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342, Springer, Heidelberg, 2011.http:// dx.doi.org/10.1007/978-3-642-15564-2.MR2777530 · Zbl 1217.46002
[16] FEDORL. NAZAROV,SERGEYR. TREIL, andALEXANDERL. VOLBERG,The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc.12(1999), no. 4, 909-928.http://dx.doi.org/10.1090/S0894-0347-99-00310-0.MR1685781 · Zbl 0951.42007
[17] GILLESPISIER,Factorization of operators throughLp∞orLp1and noncommutative generalizations, Math. Ann.276(1986), no. 1, 105-136.http://dx.doi.org/10.1007/ BF01450929.MR863711 · Zbl 0619.47016
[18] STEPHENQUINNandIGORE. VERBITSKY,A sublinear version of Schur’s lemma and elliptic PDE, Anal. PDE11(2018), no. 2, 439-466.http://dx.doi.org/10.2140/apde.2018.11. 439.MR3724493 · Zbl 1384.35031
[19] E. SAWYERandRICHARDL. WHEEDEN,Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math.114(1992), no. 4, 813-874.http://dx.doi. org/10.2307/2374799.MR1175693 · Zbl 0783.42011
[20] JAMESSCURRY,A characterization of two-weight inequalities for a vector-valued operator(2013), preprint, available athttp://arxiv.org/abs/arXiv:1007.3089[math.CA].
[21] HITOSHITANAKA,A characterization of two-weight trace inequalities for positive dyadic operators in the upper triangle case, Potential Anal.41(2014), no. 2, 487-499.http://dx.doi.org/10. 1007/s11118-013-9379-0.MR3232035 · Zbl 1298.42020
[22] ,The trilinear embedding theorem, Studia Math.227(2015), no. 3, 239-248.http:// dx.doi.org/10.4064/sm227-3-3.MR3402915 · Zbl 1333.42045
[23] ,Thenlinear embedding theorem, Potential Anal.44(2016), no. 4, 793-809.http:// dx.doi.org/10.1007/s11118-015-9531-0.MR3490550 · Zbl 1355.42025
[24] SERGEIR. TREIL,A remark on two weight estimates for positive dyadic operators, Operator-related Function Theory and Time-frequency Analysis, Abel Symp., vol. 9, Springer, Cham, 2015, pp. 185-195, available athttp://arxiv.org/abs/arXiv:1201.1455[math.CA].http://dx. doi.org/10.1007/978-3-319-08557-9_8.MR3561434
[25] IGORE. VERBITSKY,Imbedding and multiplier theorems for discrete Littlewood-Paley spaces, Pacific J. Math.176(1996), no. 2, 529-556.http://dx.doi.org/10.2140/pjm.1996.176. 529.MR1435004 · Zbl 0865.42009
[26] ,Sublinear equations and Schur’s test for integral operators, 50 Years with Hardy Spaces, Oper.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.