×

Aphid-ant mutualism: a novel nature-inspired metaheuristic algorithm for solving optimization problems. (English) Zbl 1540.90294

Summary: Swarm intelligence algorithms, which are developed for solving complex optimization problems designed by focusing on simulating the social behavior of one species of simple animals. However, simple animals utilize cooperation to work together that result in more complex and smarter behaviors. This paper proposes a novel population-based optimization paradigm for solving NP-hard problems called “Aphid-Ant Mutualism (AAM)” which is inspired by a unique relationship between aphids and ants’ species. This relationship is called ‘mutualism’. Despite the previous studies that the social behaviors of aphids and ants were simulated, AAM models mutual interaction among aphids and ants in nature. Thus, AAM has new features by incorporating heterogeneous individuals consisting of aphids and ants that live in various colonies together and have different decentralized learning behaviors and objectives. Inspired by nature, colony-based information exchange and using different search strategies including focusing on the individual’s personal knowledge, learning from other colony’s members and information sharing with adjacent colonies are used. This mutualism leads to converging to the global optimum and avoids premature convergence. Performance of AAM is assessed using statistical evaluation, convergence analysis, and a non-parametric Wilcoxon rank-sum test with a 5% significance degree on forty-one benchmarks selected from well-known functions of recent studies and more challenging benchmark functions called CEC 2014, CEC 2017 and also CEC-C06 2019 test suite. Statistical results and comparisons with other meta-heuristic algorithms demonstrate that the AAM algorithm provides promising and competitive outcomes. Furthermore, it can produce more accurate solutions with a faster convergence rate to the global optima.

MSC:

90C59 Approximation methods and heuristics in mathematical programming
Full Text: DOI

References:

[1] Abdollahzadeh, B.; Soleimanian Gharehchopogh, F.; Mirjalili, S., Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems, Int. J. Intell. Syst., 36, 10 (2021)
[2] Al-Khateeb, B.; Ahmed, K.; Mahmood, M.; Le, D. N., Rock hyraxes swarm optimization: A new nature-inspired metaheuristic optimization algorithm, Comput. Mater. Contin., 68, 1 (2021)
[3] Al-Kubaisy, W. J.; Yousif, M.; Al-Khateeb, B.; Mahmood, M.; Le, D., The red colobuses monkey: A new nature-inspired metaheuristic optimization algorithm, Int. J. Comput. Intell. Syst., 14, 1 (2021)
[4] Atashpaz-Gargari, E.; Lucas, C., Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, (2007 IEEE Congress on Evolutionary Computation, CEC 2007 (2007))
[5] Braik, M.; Ryalat, M. H.; Al-Zoubi, H., A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves, Neural Comput. Appl., 34, 1 (2022)
[6] Braik, M.; Sheta, A.; Al-Hiary, H., A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm, Neural Comput. Appl., 33, 7 (2021)
[7] Chou, Y. H.; Kuo, S. Y.; Yang, L. S.; Yang, C. Y., Next generation metaheuristic: Jaguar algorithm, IEEE Access, 6 (2018)
[8] Cikan, M.; Kekezoglu, B., Comparison of metaheuristic optimization techniques including equilibrium optimizer algorithm in power distribution network reconfiguration, Alexandria Eng. J., 61, 2 (2022)
[9] Cuevas, E.; Cienfuegos, M.; Zaldívar, D.; Pérez-Cisneros, M., A swarm optimization algorithm inspired in the behavior of the social-spider, Expert Syst. Appl., 40, 16 (2013)
[10] Das, S.; Suganthan, P. N., Differential evolution: A survey of the state-of-the-art, IEEE Trans. Evol. Comput., 15, 1 (2011)
[11] Dehghani, M.; Hubálovský, Š.; Trojovský, P., Cat and mouse based optimizer: A new nature-inspired optimization algorithm, Sensors, 21, 15 (2021)
[12] Dorigo, M.; Blum, C., Ant colony optimization theory: A survey, Theoret. Comput. Sci., 344, 2-3 (2005) · Zbl 1154.90626
[13] Ezugwu, A. E.; Prayogo, D., Symbiotic organisms search algorithm: theory, recent advances and applications, Expert Syst. Appl. (2019)
[14] Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S., Equilibrium optimizer: A novel optimization algorithm, Knowl.-Based Syst., 191 (2020)
[15] García-Algarra, J.; Galeano, J.; Pastor, J. M.; Iriondo, J. M.; Ramasco, J. J., Rethinking the logistic approach for population dynamics of mutualistic interactions, J. Theoret. Biol., 363 (2014) · Zbl 1309.92067
[16] Goh, C. K.; Tan, K. C., A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization, IEEE Trans. Evol. Comput., 13, 1 (2009)
[17] Gordon, D. M., The ecology of collective behavior in ants, Annu. Rev. Entomol. (2019)
[18] Hashim, F. A.; Houssein, E. H.; Hussain, K.; Mabrouk, M. S.; Al-Atabany, W., Honey badger algorithm: New metaheuristic algorithm for solving optimization problems, Math. Comput. Simulation, 192 (2022) · Zbl 1540.90296
[19] Heidari, A. A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H., Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019)
[20] Kaveh, A., Advances in Metaheuristic Algorithms for Optimal Design of Structures (2016) · Zbl 1359.90001
[21] Kuo, Y.-H.; Shu-Yu, Wu; Ching-Hsuan, Chen; Cheng-Chun, Chou, A novel metaheuristic: Fast jaguar algorithm, (IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2022))
[22] Li, S.; Chen, H.; Wang, M.; Heidari, A. A.; Mirjalili, S., Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020)
[23] Li, N.; Wang, L., Bare-bones based Sine cosine algorithm for global optimization, J. Comput. Sci., 47 (2020)
[24] Liang, J. J.; Suganthan, P. N., Dynamic multi-swarm particle swarm optimizer with local search, (2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings, Vol. 1 (2005))
[25] Ma, X.; Li, X.; Zhang, Q.; Tang, K.; Liang, Z.; Xie, W.; Zhu, Z., A survey on cooperative co-evolutionary algorithms, IEEE Trans. Evol. Comput., 23, 3 (2019)
[26] Meng, Z.; Li, G.; Wang, X.; Sait, S. M.; Yıldız, A. R., A comparative study of metaheuristic algorithms for reliability-based design optimization problems, Arch. Comput. Methods Eng., 28, 3 (2021)
[27] Mirjalili, S., The ant lion optimizer, Adv. Eng. Softw., 83 (2015)
[28] Mirjalili, S.; Gandomi, A. H.; Mirjalili, S. Z.; Saremi, S.; Faris, H.; Mirjalili, S. M., Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw., 114 (2017)
[29] Mirjalili, S.; Lewis, A., The whale optimization algorithm, Adv. Eng. Softw., 95 (2016)
[30] Nadimi-Shahraki, M. H.; Taghian, S.; Mirjalili, S., An improved grey wolf optimizer for solving engineering problems, Expert Syst. Appl., 166 (2021)
[31] Nafidi, R.; Ahmed, El Azri; Abdenbi, Gutiérrez Sánchez, The stochastic modified lundqvist-korf diffusion process: statistical and computational aspects and application to modeling of the CO2 emission in Morocco, Stoch. Environ. Res. Risk Assess., 36, 1163-1176 (2022)
[32] Niu, B.; Zhu, Y.; He, X.; Wu, H., MCPSO: A multi-swarm cooperative particle swarm optimizer, Appl. Math. Comput., 185, 2 (2007) · Zbl 1112.65055
[33] Oliver, T. H., The ecology and evolution of ant-aphid interactions thesis (2008)
[34] Osaba, A.; Eneko, Del Ser; Javier, Martinez; Hussain, Aritz D., Evolutionary multitask optimization: a methodological overview, challenges, and future research directions, Cognit. Comput. (2022)
[35] Rajendran, K.; Shankar, N.; Ganesh, Čep; Robert, R. C.; Narayanan, Pal; Subham, Kalita, A conceptual comparison of six nature-inspired metaheuristic algorithms in process optimization, Processes, 10, 197, 1-20 (2022)
[36] Rezaee Jordehi, A.; Jasni, J., Parameter selection in particle swarm optimisation: A survey, J. Exp. Theor. Artif. Intell., 25, 4 (2013)
[37] Saremi, S.; Mirjalili, S.; Lewis, A., Grasshopper optimisation algorithm: Theory and application, Adv. Eng. Softw., 105 (2017)
[38] Shamsaldin, A. S.; Rashid, T. A.; Al-Rashid Agha, R. A.; Al-Salihi, N. K.; Mohammadi, M., Donkey and smuggler optimization algorithm: A collaborative working approach to path finding, J. Comput. Des. Eng., 6, 4 (2019)
[39] Stadler, B.; Dixon, A. F.G., Ecology and evolution of aphid-ant interactions, Annu. Rev. Ecol. Evol. Syst. (2005)
[40] Stewart, J. E., The direction of evolution: The rise of cooperative organization, BioSystems, 123 (2014)
[41] Sumathi, S.; Hamsapriya, T.; Surekha, P., Evolutionary intelligence: An introduction to theory nd applications with matlab (2008)
[42] Tashtoush, T.; Ahmed, J.; Arce, V.; Dominguez, H.; Estrada, K.; Montes, W.; Paredez, A.; Salce, P.; Serna, A.; Zarazua, M., Developing a radiating L-shaped search algorithm for NASA swarm robots, Int. J. Adv. Comput. Sci. Appl., 11, 8 (2020)
[43] Trojovský, M.; Pavel, Dehghani, Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications, Sensors, 22, 855, 1-34 (2022)
[44] Yao, I., Costs and constraints in aphid-ant mutualism, Ecol. Res., 29, 3 (2014)
[45] Zhang, Z.; Huang, C.; Dong, K.; Huang, H., Birds foraging search: a novel population-based algorithm for global optimization, Memet. Comput., 11, 3 (2019)
[46] Zhao, H. W.; Tian, L. W., Cooperative artificial fish swarm optimization, Appl. Mech. Mater., 741 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.