×

An efficient backcalculation algorithm of time domain for large-scale pavement structures using Ritz vectors. (English) Zbl 1155.74407

This paper describes a backcalculation algorithm to determine the layer moduli and damping coefficients in the time domain for large-scale pavement structures. Pavement is modeled by three-dimensional finite element (3D FE). The parameter identification procedure makes use of Ritz vectors to reduce the size of matrices involved in the forward dynamic response analysis and the deflection sensitivity analysis. An exact complex mode superposition technique is used to obtain the dynamic response of the reduced equation system in the time domain. This method is more efficient, accurate and stable. The parameter estimates are improved iteratively by means of an algorithm that calls the finite element program of dynamic response analysis as a subroutine combining truncated singular value decomposition (TSVD) method. Simulation of a numerical solution validates the efficiency of the proposed method. Finally, the method is implemented for two experimentally tested sections of semiflexible pavement. All parameters are determined using the surface deflections of pavement experimentally recorded at the sensor locations of falling weight deflectometer (FWD).

MSC:

74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI