×

Wandering intervals in affine extensions of self-similar interval exchange maps: the cubic Arnoux-Yoccoz map. (English) Zbl 1402.37052

In this paper the authors find sufficient conditions for a self-similar interval exchange map (i.e.m.) to have an affine i.e.m. topological extension with wandering intervals. This type of problem has been studied by several researchers (see for instance [R. Camelier and C. Gutierrez, Ergodic Theory Dyn. Syst. 17, No. 6, 1315–1338 (1997; Zbl 0895.58019); M. Cobo, Ergodic Theory Dyn. Syst. 22, No. 2, 375–407 (2002; Zbl 1136.37304); X. Bressaud et al., Ergodic Theory Dyn. Syst. 30, No. 3, 665–686 (2010; Zbl 1200.37002)]). To achieve their results, the authors implement the strategy of Camelier and Gutiérrez [loc. cit.] and Bressaud et al. [loc. cit.] and use the geometric models for substitutions of P. Arnoux et al. [Exp. Math. 20, No. 1, 97–120 (2011; Zbl 1266.37008)]. Lastly, they apply their results to the cubic Arnoux-Yoccoz i.e.m. [P. Arnoux and J.-C. Yoccoz, C. R. Acad. Sci., Paris, Sér. I 292, 75–78 (1981; Zbl 0478.58023)].

MSC:

37E05 Dynamical systems involving maps of the interval
28A80 Fractals
37E20 Universality and renormalization of dynamical systems

References:

[1] Arnoux, P., Bernat, J. and Bressaud, X.. Geometrical models for substitutions. Exp. Math.20(1) (2011), 97-127. doi:10.1080/10586458.2011.544590 · Zbl 1266.37008
[2] Arnoux, P. and Yoccoz, J.-C.. Construction de difféomorphismes pseudo-Anosov. C. R. Acad. Sci. Paris Sér. I Math.292(1) (1981), 75-78. · Zbl 0478.58023
[3] Barreto, R.. 1999 On \(C^{r}\)-class of conjugacy between affine interval exchange maps and its isometric model. PhD Thesis, Instituto Nacional de Matemática Pura e Aplicada.
[4] Bressaud, X., Bufetov, A. I. and Hubert, P.. Deviation of ergodic averages for substitution dynamical systems with eigenvalues of modulus 1. Proc. Lond. Math. Soc. (3)109(2) (2014), 483-522. doi:10.1112/plms/pdu009 · Zbl 1305.37009
[5] Bressaud, X., Hubert, P. and Maass, A.. Persistence of wandering intervals in self-similar affine interval exchange transformations. Ergod. Th. & Dynam. Sys.30(3) (2010), 665-686. doi:10.1017/S0143385709000418 · Zbl 1200.37002
[6] Camelier, R. and Gutiérrez, C.. Affine interval exchange transformations with wandering intervals. Ergod. Th. & Dynam. Sys.17(6) (1997), 1315-1338. doi:10.1017/S0143385797097666 · Zbl 0895.58019
[7] Cobo, M., Piece-wise affine maps conjugate to interval exchanges, Ergod. Th. & Dynam. Sys., 22, 2, 375-407, (2002) · Zbl 1136.37304 · doi:10.1017/S0143385702000196
[8] Canterini, V. and Siegel, A.. Automate des préfixes-suffixes associé à une substitution primitive. J. Théor. Nombres Bordeaux13(2) (2001), 353-369. doi:10.5802/jtnb.327 · Zbl 1071.37011
[9] Denjoy, A., Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl. (9), 11, 9, 333-376, (1932) · JFM 58.1124.04
[10] Fogg, P., Substitutions in Dynamics, Arithmetics and Combinatorics, (2002), Springer: Springer, Berlin · Zbl 1014.11015 · doi:10.1007/b13861
[11] Keane, M., Interval exchange transformations, Math. Z., 141, 1, 25-31, (1975) · Zbl 0278.28010 · doi:10.1007/BF01236981
[12] Levitt, G., La décomposition dynamique et la différentiabilité des feuilletages des surfaces, Ann. Inst. Fourier (Grenoble), 37, 3, 85-116, (1987) · Zbl 0596.57019 · doi:10.5802/aif.1099
[13] Lowenstein, J. H., Poggiaspalla, G. and Vivaldi, F.. Interval exchange transformations over algebraic number fields: the cubic Arnoux-Yoccoz model. Dyn. Syst.22(1) (2007), 73-106. doi:10.1080/14689360601028126 · Zbl 1128.37026
[14] Lowenstein, J. H., Poggiaspalla, G. and Vivaldi, F.. Geometric representation of interval exchange maps over algebraic number fields. Nonlinearity21(1) (2008), 149-177. doi:10.1088/0951-7715/21/1/009 · Zbl 1141.37020
[15] Messaoudi, A., Frontière du fractal de Rauzy et système de numération complexe, Acta Arith., 95, 3, 195-224, (2000) · Zbl 0968.28005 · doi:10.4064/aa-95-3-195-224
[16] Marmi, S., Moussa, P. and Yoccoz, J.-C.. Affine interval exchange maps with a wandering interval. Proc. Lond. Math. Soc. (3)100(3) (2010), 639-669. doi:10.1112/plms/pdp037 · Zbl 1196.37041
[17] Mossé, B., Puissances de mots et reconnaissabilité des points fixes d’une substitution, Theoret. Comput. Sci., 99, 2, 327-334, (1992) · Zbl 0763.68049 · doi:10.1016/0304-3975(92)90357-L
[18] Queffélec, M., Substitution Dynamical Systems—Spectral Analysis, (1987), Springer: Springer, Berlin · Zbl 0642.28013 · doi:10.1007/BFb0081890
[19] Veech, W., Interval exchange transformations, J. Anal. Math., 33, 1, 222-272, (1978) · Zbl 0455.28006 · doi:10.1007/BF02790174
[20] Veech, W., Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115, 1, 201-242, (1982) · Zbl 0486.28014 · doi:10.2307/1971391
[21] Veech, W., The metric theory of interval exchange transformations I. Generic spectral properties, Amer. J. Math., 106, 6, 1331-1359, (1984) · Zbl 0631.28006 · doi:10.2307/2374396
[22] Viana, M., Ergodic theory of interval exchange maps, Rev. Mat. Complut., 19, 1, 7-100, (2006) · Zbl 1112.37003 · doi:10.5209/rev_REMA.2006.v19.n1.16621
[23] Zorich, A., Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier (Grenoble), 46, 2, 325-370, (1996) · Zbl 0853.28007 · doi:10.5802/aif.1517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.