×

Computational study of interface effect on impact load spreading in SiC multi-layered targets. (English) Zbl 1189.74099

Summary: The effect of finite strength interface with friction on lateral load spreading and phenomena of interface crack initiation and propagation in bonded multi-layered targets under high velocity impact are presented through axisymmetric finite element simulations. The finite element code DYNA2D, developed at the Lawrence Livermore National Laboratory, was augmented with a phenomenological damage model for the silicon carbide (SiC) ceramic and contact/cohesive interface model. Simulations were carried out for four target configurations under varying interface strength \((T^{m})\), critical strain energy release rate \((G_{c})\), and inter-layer friction coefficient \((\mu _{L})\). It is shown that the high wave speed SiC remains a potential material for enhanced load spreading if the confinement is ensured to reduce/delay its damage. The load spreading also increases with the increase in \(\mu _{L}\) that comes into play after the interface failure. However, the \(\mu _{L}\) of unity or more needed to approach the upper bound of load spreading found in the perfectly bonded target layers is not practical. It is shown that the resilience of the multi-layered targets depends on \(T^{m}\) as well as the \(G_{c}\). But, the lateral load spreading depends dominantly on \(T^{m}\) and reaches the upper bound with its increase. It is further shown that the interface cracks initiate and propagate in shear, mode II. The crack speed is invariably the maximum at initiation and is of the order of the longitudinal wave speed of materials on either side. The maximum initiation speed of \(11.29C_{s}\) and \(7.79C_{s}\) are predicted at the SiC-aluminum and steel-SiC interfaces for the frictionless case, where \(C_{s}\) is the shear wave speed of the more compliant aluminum or steel. The crack speed reduces monotonously after initiation, but it remains in the intersonic region for more than 150 ns. Whether the propagating crack tip attains the steady state speed depends on the available driving energy. The steady state crack speed of \(0.86C_{s}\) to \(1.21C_{s}\) is predicted only at the steel-SiC interface at 2 mm depth from the impact surface, lasts for more than \(3 \mu \)s, is shown to be independent of the interface strength upto 300 MPa, and is also independent of the friction coefficient.

MSC:

74R15 High-velocity fracture
74M20 Impact in solid mechanics
74E30 Composite and mixture properties

Software:

DYNA2D
Full Text: DOI

References:

[1] Abrate S., American Society of Mechanical Engineers. Applied Mechanics Review 44 pp 155–
[2] Abrate S., American Society of Mechanical Engineers. Applied Mechanics Reviews 47 pp 517–
[3] DOI: 10.1063/1.346090 · doi:10.1063/1.346090
[4] Ammann W. J., IMPACT: Effect of Fast Transient Loading (1987)
[5] DOI: 10.1016/0020-7683(95)00255-3 · Zbl 0929.74101 · doi:10.1016/0020-7683(95)00255-3
[6] DOI: 10.1016/0010-4361(91)90549-V · doi:10.1016/0010-4361(91)90549-V
[7] Chen W., Journal De Physique 4 pp C8–
[8] DOI: 10.1016/0734-743X(95)00023-4 · doi:10.1016/0734-743X(95)00023-4
[9] DOI: 10.1016/0734-743X(93)90108-J · doi:10.1016/0734-743X(93)90108-J
[10] DOI: 10.1016/S0167-6636(02)00266-1 · doi:10.1016/S0167-6636(02)00266-1
[11] DOI: 10.1016/0020-7683(94)00300-L · doi:10.1016/0020-7683(94)00300-L
[12] DOI: 10.1016/S0022-5096(98)00027-1 · Zbl 1056.74510 · doi:10.1016/S0022-5096(98)00027-1
[13] DOI: 10.1016/S0020-7683(97)60353-4 · Zbl 0939.74576 · doi:10.1016/S0020-7683(97)60353-4
[14] DOI: 10.1016/S0020-7683(99)00196-1 · Zbl 1090.74501 · doi:10.1016/S0020-7683(99)00196-1
[15] DOI: 10.1016/S0045-7825(99)00222-4 · Zbl 0984.74074 · doi:10.1016/S0045-7825(99)00222-4
[16] DOI: 10.1063/1.361036 · doi:10.1063/1.361036
[17] DOI: 10.1063/1.366704 · doi:10.1063/1.366704
[18] DOI: 10.1002/nme.1620170504 · Zbl 0478.73049 · doi:10.1002/nme.1620170504
[19] DOI: 10.1016/S0263-8223(01)00029-0 · doi:10.1016/S0263-8223(01)00029-0
[20] DOI: 10.1016/0045-7825(82)90129-3 · Zbl 0493.73072 · doi:10.1016/0045-7825(82)90129-3
[21] DOI: 10.1016/0022-5096(88)90015-4 · doi:10.1016/0022-5096(88)90015-4
[22] Grady D. E., Journal De Physique 4 pp C8–
[23] DOI: 10.1016/S0167-6636(98)00015-5 · doi:10.1016/S0167-6636(98)00015-5
[24] DOI: 10.1016/S0734-743X(01)00051-3 · doi:10.1016/S0734-743X(01)00051-3
[25] DOI: 10.1016/0045-7825(85)90030-1 · Zbl 0567.73120 · doi:10.1016/0045-7825(85)90030-1
[26] DOI: 10.1016/S0734-743X(00)00046-4 · doi:10.1016/S0734-743X(00)00046-4
[27] DOI: 10.1063/1.1468903 · doi:10.1063/1.1468903
[28] DOI: 10.1016/S0022-5096(98)00124-0 · Zbl 0963.74050 · doi:10.1016/S0022-5096(98)00124-0
[29] DOI: 10.1016/0013-7944(85)90052-9 · doi:10.1016/0013-7944(85)90052-9
[30] Kinslow R., High-Velocity Impact Phenomena (1970)
[31] DOI: 10.1016/S0734-743X(99)00047-0 · doi:10.1016/S0734-743X(99)00047-0
[32] DOI: 10.1115/1.3173064 · Zbl 0626.73010 · doi:10.1115/1.3173064
[33] DOI: 10.1016/1359-6454(95)00304-5 · doi:10.1016/1359-6454(95)00304-5
[34] DOI: 10.1016/0045-7949(89)90440-9 · doi:10.1016/0045-7949(89)90440-9
[35] DOI: 10.1016/S0734-743X(96)00005-X · doi:10.1016/S0734-743X(96)00005-X
[36] DOI: 10.1063/1.356066 · doi:10.1063/1.356066
[37] DOI: 10.1063/1.344085 · doi:10.1063/1.344085
[38] DOI: 10.1016/0734-743X(94)90033-H · doi:10.1016/0734-743X(94)90033-H
[39] DOI: 10.1016/0734-743X(96)89122-6 · doi:10.1016/0734-743X(96)89122-6
[40] DOI: 10.1016/S0045-7825(99)00208-X · Zbl 0992.74073 · doi:10.1016/S0045-7825(99)00208-X
[41] DOI: 10.1016/j.ijimpeng.2003.08.001 · doi:10.1016/j.ijimpeng.2003.08.001
[42] DOI: 10.1016/S0022-5096(98)00036-2 · Zbl 0945.74511 · doi:10.1016/S0022-5096(98)00036-2
[43] DOI: 10.1063/1.322523 · doi:10.1063/1.322523
[44] DOI: 10.1016/S0167-6636(98)00017-9 · doi:10.1016/S0167-6636(98)00017-9
[45] DOI: 10.1016/0045-7825(86)90057-5 · Zbl 0571.73108 · doi:10.1016/0045-7825(86)90057-5
[46] DOI: 10.1016/0020-7225(78)90066-6 · doi:10.1016/0020-7225(78)90066-6
[47] DOI: 10.1016/S0022-5096(99)00046-0 · doi:10.1016/S0022-5096(99)00046-0
[48] DOI: 10.1016/S0020-7683(02)00245-7 · doi:10.1016/S0020-7683(02)00245-7
[49] DOI: 10.1016/S0020-7683(02)00466-3 · Zbl 1032.74645 · doi:10.1016/S0020-7683(02)00466-3
[50] DOI: 10.1063/1.1365438 · doi:10.1063/1.1365438
[51] Zukas J. A., Impact Dynamics (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.