×

Constant vorticity atmospheric Ekman flows in the \( f\)-plane approximation. (English) Zbl 1498.35411

Summary: We study the geophysical fluid dynamical problem of the wind in the steady atmospheric Ekman layer with constant eddy viscosity. Three dimensional Ekman flows with constant vorticity is considered in the \( f\)-plane approximation. For non-equatorial \( f\)-plane approximation, we show that any bounded solution of the Ekman flow with a flat surface and constant vorticity vector is the stationary flow with vanishing velocity field, while for the equatorial \( f\)-plane approximation, we obtain that the pressure presents no variation in the northward direction and the meridional component is constant throughout the fluid domain.

MSC:

35Q31 Euler equations
35Q86 PDEs in connection with geophysics
86A10 Meteorology and atmospheric physics
76U60 Geophysical flows
35J60 Nonlinear elliptic equations
Full Text: DOI

References:

[1] A. Bressan; A. Constantin, The deflection angle of surface ocean currents from the wind direction, J. Geophys. Res. Oceans, 124, 7412-7420 (2019) · doi:10.1029/2019JC015454
[2] J. F. Chu, I. K. Delia and Y. J. Yang, Exact solution and instability for geophysical waves with centripetal forces and at arbitrary latitude, J. Math. Fluid Mech., 21 (2019), Art.19, 16pp. · Zbl 1411.86002
[3] J. F. Chu; D. K. Ionescu; Y. J. Yang, Exact solution and instability for geophysical waves at arbitrary latitude, Discrete Contin. Dyn. Syst., 39, 4399-4414 (2019) · Zbl 1419.37075 · doi:10.3934/dcds.2019178
[4] J. F. Chu; Y. J. Yang, Constant vorticity water flows in the euqatorial \(\beta-\) plane approximation with centripetal forces, J. Differential Equations, 269, 9336-9347 (2020) · Zbl 1448.35509 · doi:10.1016/j.jde.2020.06.044
[5] J. F. Chu; Y. J. Yang, A cylindrical coordinates approach to constant vorticity geophysical waves with centripetal forces at arbitrary latitude, J. Differential Equations, 279, 46-62 (2021) · Zbl 1458.35311 · doi:10.1016/j.jde.2021.01.014
[6] A. Constantin, Two-dimensionality of gravity water flows of constant nonzero vorticity beneath a surface wave train, Eur. J. Mech. B Fluids, 30, 12-16 (2011) · Zbl 1222.76020 · doi:10.1016/j.euromechflu.2010.09.008
[7] A. Constantin, On the modelling of equatorial waves, Geophysical Research Letters, 39 (2012), L05602.
[8] A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. Oceans, 117 (2012), C05029.
[9] A. Constantin, Some three-dimensional nonlinear equatorial flows, J. Phys. Oceanogr, 43, 165-175 (2013) · doi:10.1175/JPO-D-12-062.1
[10] A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr, 44, 781-789 (2014) · doi:10.1175/JPO-D-13-0174.1
[11] A. Constantin; P. Germain, Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118, 2802-2810 (2013) · doi:10.1002/jgrc.20219
[12] A. Constantin; R. S. Johnson, Atmospheric Ekman flows with variable eddy viscosity, Boundary-Layer Meteorology, 170, 395-414 (2019) · doi:10.1007/s10546-018-0404-0
[13] A. Constantin; R. S. Johnson, An exact, steady, purely azimuthal equatorial flow with a free surface, J. Geophys. Res. Oceans, 46, 1935-1945 (2016) · doi:10.1175/JPO-D-15-0205.1
[14] A. Constantin; R. S. Johnson, A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the pacific equatorial undercurrent and thermocline, Phys. Fluids, 29, 056604 (2017) · doi:10.1063/1.4984001
[15] A. Constantin; E. Kartashova, Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves, Europhys. Lett., 86, 29001 (2009) · doi:10.1209/0295-5075/86/29001
[16] A. Constantin; S. G. Monismith, Gerstner waves in the presence of mean currents and rotation, J. Fluid Mech., 820, 511-528 (2017) · Zbl 1387.86009 · doi:10.1017/jfm.2017.223
[17] D. G. Dritschel; N. Paldor; A. Constantin, The Ekman spiral for piecewise-uniform diffusivity, Ocean Science, 16, 1089-1093 (2020) · doi:10.5194/os-2020-31
[18] V. W. Ekman, On the influence of the Earth’s rotation on ocean-currents, Arkiv for Matematik Astronmi Och Fysik, 2, 1-52 (1905) · JFM 36.1009.04
[19] L. L. Fan; H. J. Gao, On three-dimensional geophysical capillary-gravity water flows with constant vorticity, Ann. Mat. Pura Appl. (4), 200, 711-720 (2021) · Zbl 1460.35281 · doi:10.1007/s10231-020-01010-4
[20] M. Fečkan; Y. Guan; D. O’Regan; J. Wang, Existence and uniqueness and first order approximation of solutions to atmospheric Ekman flows, Monatsh. Math., 193, 623-636 (2020) · Zbl 1453.34027 · doi:10.1007/s00605-020-01414-7
[21] Y. Guan, M. Fečkan and J. Wang, Explicit solution of atmospheric Ekman flows with some types of Eddy viscosity, Monatsh. Math., (2021). · Zbl 1492.34003
[22] Y. Guan; M. Fečkan; J. Wang, Explicit solution and dynamical properties of atmospheric Ekman flows with boundary conditions, Electron. J. Qual. Theory Differ. Equ., 2021, 1-19 (2021) · Zbl 1474.34245 · doi:10.14232/ejqtde.2021.1.3
[23] D. Henry, A modified equatorial \(\beta-\) plane approximation modelling nonlinear wave-current interactions, J. Differential Equations, 263, 2554-2566 (2017) · Zbl 1365.76020 · doi:10.1016/j.jde.2017.04.007
[24] D. Henry, Exact equatorial water waves in the \(f-\) plane, Nonlinear Anal. Real World Appl., 28, 284-289 (2016) · Zbl 1329.86009 · doi:10.1016/j.nonrwa.2015.10.003
[25] D. Henry, An exact solution for equatorial geophysical water waves with an underlying current, Eur. J. Mech. B Fluids, 38, 18-21 (2013) · Zbl 1297.86002 · doi:10.1016/j.euromechflu.2012.10.001
[26] D. Henry, Equatorially trapped nonlinear water waves in a \(\beta-\) plane approximation with centripetal forces, J. Fluid Mech., 804 (2016), R1, 11pp. · Zbl 1454.76024
[27] D. Henry; C. I. Martin, Exact, free-surface equatorial flows with general stratification in spherical coordinates, Arch. Ration. Mech. Anal., 233, 497-512 (2019) · Zbl 1417.35203 · doi:10.1007/s00205-019-01362-z
[28] D. Henry; C. I. Martin, Stratified equatorial flows in cylindrical coordinates, Nonlinearity, 33, 3889-3904 (2020) · Zbl 1447.35329 · doi:10.1088/1361-6544/ab801f
[29] D. Ionescu-Kruse, Analytical atmospheric Ekman-type solutions with heght-dependent eddy viscosities, J. Math. Fluid Mech., 23 (2021), Art.18, 11pp. · Zbl 1458.76119
[30] D. Ionescu-Kruse, Instability of edge waves along a sloping beach, J. Differential Equations, 256, 3999-4012 (2014) · Zbl 1295.35062 · doi:10.1016/j.jde.2014.03.009
[31] D. Ionescu-Kruse, Short-wavelength instability of edge waves in stratified water, Discrete Contin. Dyn. Syst., 35, 2053-2066 (2015) · Zbl 1302.76070 · doi:10.3934/dcds.2015.35.2053
[32] S. Leblanc, Local stability of Gerstner’s waves, J. Fluid Mech., 506, 245-254 (2004) · Zbl 1062.76019 · doi:10.1017/S0022112004008444
[33] C. I. Martin, Two-dimensionality of gravity water flows governed by the equatorial \(f-\) plane approximation, Ann. Mat. Pura Appl.(4), 196, 2253-2260 (2017) · Zbl 1382.35202 · doi:10.1007/s10231-017-0663-2
[34] C. I. Martin, Constant vorticity water flows with full Coriolis term, Nonlinearity, 32, 2327-2336 (2019) · Zbl 1420.35244 · doi:10.1088/1361-6544/ab1c76
[35] C. I. Martin, On constant vorticity water flows in the \(\beta-\) plane approximation, J. Fluid Mech., 865, 762-774 (2019) · Zbl 1415.76077 · doi:10.1017/jfm.2019.95
[36] C. I. Martin, Geophysical water flows with constant vorticity and centripetal terms, Ann. Mat. Pura Appl.(4), 200, 101-116 (2021) · Zbl 1464.35201 · doi:10.1007/s10231-020-00985-4
[37] J. Wang, M. Fečkan and Y. Guan, Constant vorticity Ekman flows in the \(\beta-\) plane approximation, J. Math. Fluid Mech., 23 (2021), Art.85, 11pp. · Zbl 1471.76086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.