×

Geodesic simplex based multiobjective endmember extraction for nonlinear hyperspectral mixtures. (English) Zbl 1535.94006

Summary: This paper presents a novel multiobjective endmember extraction approach for nonlinear hyperspectral mixtures by assuming that the distribution of mixtures conforms to a nonlinear manifold and the endmembers correspond to its extreme points. To identify the endmembers, the approach aims to seek a set of pixels which define a simplex with the maximum volume along the manifold. Meanwhile, several obstacles are properly settled to make it a good performance. First, calculating a simplex’s volume along the manifold needs to calculate the geodesic distance (i.e., the shortest path) between its vertices on the \(k\)-nearest neighbor (kNN) graph of the manifold data, but it is time-consuming to go through all the manifold points to search the desired simplex. Therefore, a boundary detection technique is proposed to restrict the identification of endmembers within the boundary points of the manifold to improve the time efficiency. Second, the volume of the geodesic distance based simplex is sensitive to the deviations in the geodesic distance caused by noise. To settle this issue, the multiple regression based noise estimation method is applied due to the high correlation among hundreds of spectral bands. Therefore, the spectral noise can be removed before the calculation of geodesic distance. Third, the number of endmembers is of crucial importance but hard to determine, so it is usually specified beforehand in most unmixing approaches. The proposed approach can instinctively obtain a set of simplices with the maximum volume corresponding to different numbers of endmembers, thus providing more insight for determining the optimal combination of endmembers. In addition, the proposed method is a population based optimization method which is less likely to get trapped into the local optimum. The experiments on synthetic as well as real data sets demonstrate the validity and superiority of the proposed method as compared with the methods of the same type.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68U10 Computing methodologies for image processing
90C35 Programming involving graphs or networks

Software:

Algorithm 97; MOEA/D
Full Text: DOI

References:

[1] Akbari, H.; Kosugi, Y.; Kojima, K.; Tanaka, N., Detection and analysis of the intestinal ischemia using visible and invisible hyperspectral imaging, IEEE Trans. Biomed. Eng., 57, 2011-2017 (2010)
[2] Bioucas-Dias, J. M.; Nascimento, J. M., Hyperspectral subspace identification, IEEE Trans. Geosci. Remote Sens., 46, 2435-2445 (2008)
[3] Boardman, J.W., Kruse, F.A., & Green, R.O. (1995). Mapping target signatures via partial unmixing of aviris data. In Proc. Fifth Annu. JPL Airborne Earth Sci. Workshop (pp. 23-26). Pasadena, USA: JPL.
[4] Chan, T.-H.; Chi, C.-Y.; Huang, Y.-M.; Ma, W.-K., A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing, IEEE Trans. Signal Process., 57, 4418-4432 (2009) · Zbl 1392.94129
[5] Chang, C.-I.; Wu, C.-C.; Liu, W.; Ouyang, Y.-C., A new growing method for simplex-based endmember extraction algorithm, IEEE Trans. Geosci. Remote Sens., 44, 2804-2819 (2006)
[6] Dennison, P. E.; Charoensiri, K.; Roberts, D. A.; Peterson, S. H.; Green, R. O., Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., 100, 212-222 (2006)
[7] Dijkstra, E. W., A note on two problems in connexion with graphs, Numer. Math., 1, 269-271 (1959) · Zbl 0092.16002
[8] Dobigeon, N.; Tourneret, J.-Y.; Richard, C.; Bermudez, J. C.M.; McLaughlin, S.; Hero, A. O., Nonlinear unmixing of hyperspectral images: Models and algorithms, IEEE Signal Process Mag., 31, 82-94 (2013)
[9] Fan, W.; Hu, B.; Miller, J.; Li, M., Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data, Int. J. Remote Sens., 30, 2951-2962 (2009)
[10] Floyd, R. W., Algorithm 97: Shortest path, Commun. ACM, 5, 345 (1962)
[11] Gendrin, C.; Roggo, Y.; Collet, C., Pharmaceutical applications of vibrational chemical imaging and chemometrics: A review, J. Pharm. Biomed. Anal., 48, 533-553 (2008)
[12] Gowen, A.; O’Donnell, C.; Cullen, P.; Downey, G.; Frias, J., Hyperspectral imaging-an emerging process analytical tool for food quality and safety control, Trends Food Sci. Technol., 18, 590-598 (2007)
[13] Halimi, A.; Altmann, Y.; Dobigeon, N.; Tourneret, J.-Y., Nonlinear unmixing of hyperspectral images using a generalized bilinear model, IEEE Trans. Geosci. Remote Sens., 49, 4153-4162 (2011)
[14] Hapke, B., Bidirectional reflectance spectroscopy: 1. theory, J. Geophys. Res. Solid Earth, 86, 3039-3054 (1981)
[15] Heylen, R.; Burazerovic, D.; Scheunders, P., Non-linear spectral unmixing by geodesic simplex volume maximization, IEEE J. Sel. Top. Signal Process., 5, 534-542 (2010)
[16] Heylen, R.; Parente, M.; Gader, P., A review of nonlinear hyperspectral unmixing methods, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 7, 1844-1868 (2014)
[17] Heylen, R.; Scheunders, P., A distance geometric framework for nonlinear hyperspectral unmixing. IEEE J, Sel. Top. Appl. Earth Obs. Remote Sens., 7, 1879-1888 (2014)
[18] Heylen, R.; Scheunders, P., A multilinear mixing model for nonlinear spectral unmixing, IEEE Trans. Geosci. Remote Sens., 54, 240-251 (2016)
[19] Jiang, X.; Gong, M.; Li, H.; Zhang, M.; Li, J., A two-phase multiobjective sparse unmixing approach for hyperspectral data, IEEE Trans. Geosci. Remote Sens., 56, 508-523 (2018)
[20] Jiang, X.; Gong, M.; Zhan, T.; Zhang, M., Multiobjective endmember extraction based on bilinear mixture model, IEEE Trans. Geosci. Remote Sens., 58, 8192-8210 (2020)
[21] Keshava, N.; Mustard, J. F., Spectral unmixing, IEEE Signal Process Mag., 19, 44-57 (2002)
[22] Li, J., & Bioucas-Dias, J.M. (2008). Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data. In IEEE Int. Geosci. Remote Sens. Symp. (pp. III-250). Piscataway, NJ: IEEE.
[23] Li, J.; Bioucas-Dias, J. M.; Plaza, A.; Lin, L., Robust collaborative nonnegative matrix factorization for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., 54, 6076-6090 (2016)
[24] Li, L.; Yao, X.; Stolkin, R.; Gong, M.; He, S., An evolutionary multiobjective approach to sparse reconstruction, IEEE Trans. Evol. Comput., 18, 827-845 (2014)
[25] Manolakis, D.; Siracusa, C.; Shaw, G., Hyperspectral subpixel target detection using the linear mixing model, IEEE Trans. Geosci. Remote Sens., 39, 1392-1409 (2001)
[26] McGwire, K.; Minor, T.; Fenstermaker, L., Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environments, Remote Sens. Environ., 72, 360-374 (2000)
[27] Mustard, J. F.; Pieters, C. M., Abundance and distribution of ultramafic microbreccia in moses rock dike: Quantitative application of mapping spectroscopy, J. Geophys. Res. Solid Earth, 92, 10376-10390 (1987)
[28] Nascimento, J. M.; Dias, J. M., Vertex component analysis: A fast algorithm to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., 43, 898-910 (2005)
[29] Sammon, J. W., A nonlinear mapping for data structure analysis, IEEE Trans. Comput., 100, 401-409 (1969)
[30] Shipman, H.; Adams, J. B., Detectability of minerals on desert alluvial fans using reflectance spectra, J. Geophys. Res. Solid Earth, 92, 10391-10402 (1987)
[31] Shkuratov, Y.; Kaydash, V.; Korokhin, V.; Velikodsky, Y.; Petrov, D.; Zubko, E.; Stankevich, D.; Videen, G., A critical assessment of the hapke photometric model, J. Quant. Spectrosc. Radiat. Transfer, 113, 2431-2456 (2012)
[32] Wang, Y.; Pan, C.; Xiang, S.; Zhu, F., Robust hyperspectral unmixing with correntropy-based metric, IEEE Trans. Image Process., 24, 4027-4040 (2015) · Zbl 1408.94695
[33] Winter, M.E. (1999). N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In Proc. SPIE Image Spectrom. V (pp. 266-275). volume 3753.
[34] Yang, B.; Chen, Z.; Wang, B., Nonlinear endmember identification for hyperspectral imagery via hyperpath-based simplex growing and fuzzy assessment. IEEE J, Sel. Top. Appl. Earth Obs. Remote Sens., 13, 351-366 (2020)
[35] Yang, B.; Luo, W.; Wang, B., Constrained nonnegative matrix factorization based on particle swarm optimization for hyperspectral unmixing. IEEE J, Sel. Top. Appl. Earth Obs. Remote Sens., 10, 3693-3710 (2017)
[36] Zhang, Q.; Li, H., MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 712-731 (2007)
[37] Zhu, F., Spectral unmixing datasets with ground truths, CoRR, arXiv, 1708, 05125 (2017)
[38] Zhu, F.; Wang, Y.; Xiang, S.; Fan, B.; Pan, C., Structured sparse method for hyperspectral unmixing, ISPRS J. Photogramm. Remote Sens., 88, 101-118 (2014)
[39] Zigelman, G.; Kimmel, R.; Kiryati, N., Texture mapping using surface flattening via multidimensional scaling, IEEE Trans. Visual Comput. Graphics, 8, 198-207 (2002)
[40] Jiang, X.; Gong, M.; Zhan, T.; Sheng, K.; Xu, M., Efficient two-phase multiobjective sparse unmixing approach for hyperspectral data, IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 14, 2418-2431 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.