×

Borel-Leroy summability of a nonpolynomial potential. (English) Zbl 1176.34109

On \(L^2(-\infty,\infty)\) consider the one-dimensional Schrödinger operator \[ H(g)=-\frac12\;\frac{d^2}{dx^2}+\frac12\;x^2+\frac{g^{m-1}x^{2m}}{1+\alpha gx^2}, \] where \(m\) is a positive integer, \(\alpha >0\) and \(g\geq0\). The case \(m=1,2,3\) occurs in physical models of laser theory and quantum field theory. In this paper, the dependence of the eigenvalues on \(g\) for sufficiently small \(g\) is investigated. Using the idea and methods of [G. Auberson, Commun.Math.Phys., 84, 531–546 (1982; Zbl 0508.34042)] established for the cases \(m=2\), it is shown that for all \(m\geq3\) the \(j\)-th eigenvalue \(E_j(g)\) depend analytically on the complexified parameter \(g\) in sectors \(S_j\{g|0<|g|\leq r_j,\, |\arg g|<\theta<\pi\}\), and an asymptotic expansion of \(E_ j(g)\) is given.

MSC:

34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
34E05 Asymptotic expansions of solutions to ordinary differential equations
40G10 Abel, Borel and power series methods
34L20 Asymptotic distribution of eigenvalues, asymptotic theory of eigenfunctions for ordinary differential operators

Citations:

Zbl 0508.34042
Full Text: DOI

References:

[1] Simon, B., Ann. Phys., 58, 76 (1970)
[2] Graffi, S.; Grecchi, V.; Simon, B., Phys. Lett., 32B, 631 (1970)
[3] Auberson, G., Commun. Math. Phys., 84, 531 (1982) · Zbl 0508.34042
[4] Auberson, G.; Boissiere, T., Il Nuovo Cimento, 75B, 105 (1983)
[5] Varshni, Y. P., Phys. Rev., A36, 3009 (1987)
[6] Flessa, J. G.P., Phys. Lett., 83A, 121 (1981)
[7] Bleche, M. H.; Leach, P. G.L., J. Phys., A20, 5923 (1987) · Zbl 0656.35023
[8] Mitra, A. K., J. Math. Phys., 19, 2018 (1978) · Zbl 0426.65046
[9] Salam, A.; Strathdee, J., Phys. Rev., D1, 3286 (1970)
[10] Fried, M., Phys. Rev., 174, 1725 (1968)
[11] da Costa, G. A.T. F.; Gomes, M., J. Math. Phys., 30, 1007 (1989)
[12] da Costa, G. A.T. F., J. Math. Phys., 32, 1293 (1991) · Zbl 0728.05057
[13] Kato, T., (Perturbation Theory for Linear Operators (1966), Springer: Springer Berlin-Heidelberg-NY) · Zbl 0148.12601
[14] Reed, M.; Simon, B., (Methods of Modern Mathematical Physics, vol I (Functional Analysis) (1972), Academic Press: Academic Press NY) · Zbl 0242.46001
[15] Reed, M.; Simon, B., (Methods of Modern Mathematical Physics, vol IV (Analysis of Operators) (1978), Academic Press: Academic Press NY) · Zbl 0401.47001
[16] Auberson, G.; Mennessier, G., J. Math. Phys., 22, 2472 (1981) · Zbl 0471.40005
[17] Sokal, A., J. Math. Phys., 21, 261 (1980) · Zbl 0441.40012
[18] da Costa, G. A.T. F., Atas do 55o, Seminário Brasileiro de Análise, 601 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.