×

The large scale topology and algebraic \(K\)-theory of arithmetic groups. (English) Zbl 1092.22008

A symmetric space is a simply connected Riemannian manifold \(X\)of nonpositive sectional curvature such that for each point \(x\in X\) the geodesic symmetry \(s_{x}:X\rightarrow X\) given by \(\exp _{x}(v)\mapsto \exp _{x}(-v)\) for all \(v\in T_{x}(X) \) is an isometry of \(X\). If \(X\) is noncompact and it has no Euclidean space as a Riemannian, then one says that \(X\) is of noncompact type. If \(G\) is a semisimple Lie group with finite center and no compact factors, and if \(H\) is a maximal compact subgroup, then the homogeneous space \(G/H\) is a symmetric space of noncompact type. This paper is devoted to provide an outline of the proof of the following result: Given the symmetric space \(X\) associated with a split rank algebraic group \(G\), there is an embedding of \(X\) in a space \(X^{\ast }\) such that:
1. \(X^{\ast }\) is compact and Hausdorff,
2. \(X\) is an open dense subset of \(X^{\ast }\),
3. \(X^{\ast }\) is acyclic,
4. the isometries of \(X\) extend to continuous maps of \(X^{\ast }\),
5. there are continuous equivariant maps from \(X^{\ast }\) to other compactifications of \(X\).
The author uses the \(K\)-theory of the Satake compactification \(X^{S}\) [S. Zucker, Comment. Math. Helv. 58, 312–343 (1983; Zbl 0565.22009)] and the Borel-Serre enlargement \(X_{\mathbb{Q}}^{BS}\) [A. Borel and J.-P. Serre, Comment. Math. Helv. 48, 436–491 (1973; Zbl 0274.22011)] to obtain a proof of the integral Novikov conjecture [S. C. Ferry, A. Ranicki and J. Rosenberg (eds.), Novikov conjectures, index theorems and rigidity, (Cambridge Univ. Press, London) (1995; Zbl 0829.00027; Zbl 0829.00028)] for arithmetic groups.

MSC:

22E40 Discrete subgroups of Lie groups
20F65 Geometric group theory
53C35 Differential geometry of symmetric spaces
11F06 Structure of modular groups and generalizations; arithmetic groups
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.)
Full Text: DOI

References:

[1] Bestvina, M., Local homology properties of boundaries of groups, Michigan Math. J., 43, 123-139 (1996) · Zbl 0872.57005
[2] Borel, A.; Serre, J.-P., Corners and arithmetic groups, Comment. Math. Helv., 48, 436-491 (1973) · Zbl 0274.22011
[3] Bourbaki, N., General Topology (1989), Springer: Springer Berlin, Chapters 1-4 · Zbl 0683.54003
[4] Carlsson, G.; Pedersen, E. K., Controlled algebra and the Novikov conjecture for \(K\)- and \(L\)-theory, Topology, 34, 731-758 (1993) · Zbl 0838.55004
[5] Carlsson, G.; Pedersen, E. K., Čech homology and the Novikov conjectures, Math. Scand., 82, 5-47 (1998) · Zbl 0936.19003
[6] Epstein, D. B.A.; Cannon, J. W.; Holt, D. F.; Levy, S. V.F.; Paterson, M. S.; Thurston, W. P., Word Processing in Groups (1992), Jones and Bartlett Publishers · Zbl 0764.20017
[7] Farb, B., Combing lattices in semisimple Lie groups, (Groups-Korea ’94. Groups-Korea ’94, Pusan (1995), de Gruyter: de Gruyter Berlin), 57-67 · Zbl 0874.22007
[8] (Ferry, S. C.; Ranicki, A.; Rosenberg, J., Novikov Conjectures, Index Theorems and Rigidity, 2 vols.. Novikov Conjectures, Index Theorems and Rigidity, 2 vols., Oberwolfach, 1993 (1995), Cambridge University Press: Cambridge University Press Cambridge)
[9] Goldfarb, B., Novikov conjectures for arithmetic groups with large actions at infinity, \(K\)-Theory, 11, 319-372 (1997) · Zbl 0881.19005
[10] Goldfarb, B., Novikov conjectures and relative hyperbolicity, Math. Scand., 85, 169-183 (1999) · Zbl 0981.19002
[11] Goresky, M.; Harder, G.; MacPherson, R., Weighted cohomology, Invent. Math., 116, 139-214 (1994) · Zbl 0849.11047
[12] Guivarc’h, Y.; Ji, L.; Taylor, J., Compactifications of symmetric spaces, C. R. Acad. Sci. Paris, 317, 1103-1108 (1993) · Zbl 0814.53038
[13] Im Hof, H.-C., Visibility, horocycles, and the Bruhat decompositions, (Ferus, D.; etal., Global Differential Geometry and Global Analysis. Global Differential Geometry and Global Analysis, Lecture Notes in Math., vol. 833 (1981), Springer: Springer Berlin), 149-153 · Zbl 0437.53037
[14] Ji, L., Satake and Martin compactifications of symmetric spaces are topological balls, Math. Res. Lett., 4, 79-89 (1997) · Zbl 0883.53048
[15] Karpelevič, F. I., The geometry of geodesics and the eigenfunctions of the Beltrami-Laplace operator on symmetric spaces, Trans. Moscow Math. Soc., 14, 51-199 (1965) · Zbl 0164.22202
[16] Kushner, G. F., The Karpelevič compactification is homeomorphic to a ball, (Proc. Seminar in Vector and Tensor Analysis, vol. 19 (1979), Moscow University Press: Moscow University Press Moscow), 95-111, (in Russian) · Zbl 0434.53035
[17] Le Ahn, N., On the Vietoris-Begle theorem, Mat. Zametki, 36, 847-854 (1984), (in Russian)
[18] Malcev, A. I., On one class of homogeneous spaces, Izv. Akad. Nauk SSSR, Ser. Mat., 13, 9-32 (1949), English translation: Amer. Math. Soc. Transl. 39 (1951) 276-307 · Zbl 0034.01701
[19] Satake, I., On representations and compactifications of symmetric Riemannian spaces, Ann. of Math., 77, 77-110 (1960) · Zbl 0094.34603
[20] Satake, I., On compactifications of the quotient spaces for arithmetically defined discontinuous groups, Ann. of Math., 72, 555-580 (1960) · Zbl 0146.04701
[21] Taylor, J. C., Compactifications defined by a polyhedral cone decomposition of \(R^n\), (Picardello, M. A., Harmonic Analysis and Discrete Potential Theory (1992), Plenum: Plenum New York), 1-14
[22] Zucker, S., \(L_2\)-cohomology of warped products and arithmetic groups, Invent. Math., 70, 169-218 (1982) · Zbl 0508.20020
[23] Zucker, S., Satake compactifications, Comment. Math. Helv., 58, 312-343 (1983) · Zbl 0565.22009
[24] Zucker, S., \(L_2\)-cohomology and intersection homology of locally symmetric varieties, II, Comp. Math., 59, 339-398 (1986) · Zbl 0624.14014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.