×

Bi-objective flow shop scheduling with equipotential parallel machines. (English) Zbl 1535.90062

Summary: Scheduling is very important concept in each and every field of life especially in case of manufacturing process. Actually, a production schedule is the time table that tells the time at which an assignment will be processed on various machines. The Schedule also gives the information about starting and finishing of a work on one machine. This paper also deals with the theory of Scheduling. The main attraction of this study is the optimization done on like Parallel machines with the help of Fuzzy Processing Times. Here the problem of optimization on Two Stage Flow Shop Model has been taken into consideration. This paper reveals an algorithm using Branch and bound method for scheduling on three like parallel machines available at initial stage and solo machine at next stage having processing period of all works as fuzzy triangular numbers involving transportation time from first stage to second stage. Algorithm provides an optimal sequence of jobs for minimizing make span as well as the unit operational cost of each job on all three parallel machines. Numerical example has also been discussed for elaborating this situation. The proposed model is the extension of model presented by D. Gupta et al. [Int. J. Syst. Assur. Eng. Manage. 13, No. 3, 1162–1169 (2022; doi:10.1007/s13198-021-01411-5)].

MSC:

90B35 Deterministic scheduling theory in operations research
90C57 Polyhedral combinatorics, branch-and-bound, branch-and-cut
Full Text: DOI

References:

[1] A. Aalaei, V. Kayvanfar & H. Davoudpour (2017). A multi-objective optimization for pre-emptive identical parallel machines scheduling problem. Computational and Applied Mathe-matics, 36(3), 1367-1387. https://doi.org/10.1007/s40314-015-0298-0 · Zbl 1370.90106 · doi:10.1007/s40314-015-0298-0
[2] F. Adam & N. Hassan (2017). Group decision making methods based on multi Q-fuzzy soft interval set. Malaysian Journal of Mathematical Sciences, 11(1), 53-69. · Zbl 1527.03018
[3] S. Ashour (1967). A decomposition approach for the machine scheduling problem. The International Journal of Production Research, 6(2), 109-122. https://doi.org/10.1080/ 00207546708929772. · doi:10.1080/00207546708929772.
[4] M. Azizoglu, S. Kondakci & O. Kirca (1991). Bicriteria scheduling problem involving total tardiness and total earliness penalties. International Journal of Production Economics, 23(1-3),11-18. https://doi.org/10.1016/0925-5273(91)90044-T · doi:10.1016/0925-5273(91)90044-T
[5] A. A. Cenna & M. T. Tabucanon (1991). Bicriterion scheduling problem in a job shop with parallel processors. International Journal of Production Economics, 25(1-3), 95-101. https:// doi.org/10.1016/0925-5273(91)90135-G. · doi:10.1016/0925-5273(91)90135-G.
[6] A. B. Chandramouli (2005).Heusistic approach for n-job, 3-machine flow shop scheduling problem involving transportation time, break down time and weight of jobs. Mathematical and Computational Applications, 10 (2), 301-305. https://doi.org/10.3390/mca10020301. · Zbl 1081.90554 · doi:10.3390/mca10020301.
[7] C. L. Chen & R. L. Bulfin (1993). Complexity of single machine, multi-criteria scheduling problems. European Journal of Operational Research, 70(1), 115-125. https://doi.org/10.1016/ 0377-2217(93)90236-G. · Zbl 0795.90032 · doi:10.1016/0377-2217(93)90236-G.
[8] T. C. E. Cheng & C. C. S. Sin (1990). A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research, 47(3), 271-292. https://doi.org/10.1016/ 0377-2217(90)90215-W. · Zbl 0707.90053 · doi:10.1016/0377-2217(90)90215-W.
[9] T. Chung, J. N. D. Gupta, H. Zhao & F. Werner (2019). Minimizing the makespan on two identical parallel machines with mold constraints. Computers & Operations Research, 105, 141-155. https://doi.org/10.1016/j.cor.2019.01.005. · Zbl 1458.90277 · doi:10.1016/j.cor.2019.01.005.
[10] Y. Crama (1997). Combinatorial optimization models for production scheduling in au-tomated manufacturing systems. European Journal of Operational Research, 99(1), 136-153. https://doi.org/10.1016/S0377-2217(96)00388-8. · Zbl 0923.90066 · doi:10.1016/S0377-2217(96)00388-8.
[11] R. A. Dudek & O. F. Teuton Jr, (1964). Development of m-stage decision rule for scheduling n jobs through m machines. Operations Research, 12(3), 471-497. https://doi.org/10.1287/ opre.12.3.471. · Zbl 0208.45704 · doi:10.1287/opre.12.3.471.
[12] M. H. Fazel Zarandi & V. Kayvanfar (2015). A bi-objective identical parallel machine scheduling problem with controllable processing times: a just-in-time approach. The In-ternational Journal of Advanced Manufacturing Technology, 77(1), 545-563. https://doi.org/10. 1007/s00170-014-6461-8 · doi:10.1007/s00170-014-6461-8
[13] R. J. Giglio & H. M. Wagner (1964). Approximate solutions to the three-machine scheduling problem. Operations Research, 12(2), 305-324. https://doi.org/10.1287/opre.12.2.305. · doi:10.1287/opre.12.2.305.
[14] D. Gupta, S. Aggarwal & S. Sharma (2012). A fuzzy logic based approach to minimize the rental cost of machines for specially structured three stages flowshop scheduling. Advances in Applied Science Research, 3(2), 1071-1076.
[15] D. Gupta, S. Sharma & S. Aggarwal (2013). Flow shop scheduling on 2-machines with setup time and single transport facility under fuzzy environment. OPSEARCH, 50(1), 14-24. https://doi.org/10.1007/s12597-012-0094-1 · Zbl 1353.90060 · doi:10.1007/s12597-012-0094-1
[16] D. Gupta, P. Singla & S. Bala (2013). Two stage flow shop scheduling problem including transportation time and weightage of jobs with branch and bound method. International Journal of Applied Operational Research, 3(4), 1-6.
[17] D. Gupta & S. Goel (2018). Three stage flow shop scheduling model with m-equipotential machines. International Journal on Future Revolution in Computer Science & Communication Engineering, 4(3), 269-274.
[18] D. Gupta, S. Goel & N. Mangla (2022). Optimization of production scheduling in two stage flow shop scheduling problem with m equipotential machines at first stage. International Journal of System Assurance Engineering and Management, 13(3), 1162-1169. https://doi.org/ 10.1007/s13198-021-01411-5 · doi:10.1007/s13198-021-01411-5
[19] E. Ignall & L. Schrage (1965). Application of the branch and bound technique to some flow-shop scheduling problems. Operations Research, 13(3), 400-412. https://doi.org/10.1287/ opre.13.3.400. · doi:10.1287/opre.13.3.400.
[20] H. Ishibuchi, T. Murata & K. H.Lee (1996). Formulation of fuzzy flowshop scheduling prob-lems with fuzzy processing time. In Proceedings of IEEE 5th International Fuzzy Systems, pp. 199-205. IEEE, New Orleans, LA, USA. https://doi.org/10.1109/FUZZY.1996.551742. · doi:10.1109/FUZZY.1996.551742.
[21] S. M. Johnson (1954). Optimal two-and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61-68. https://doi.org/10.1002/nav. 3800010110. · Zbl 1349.90359 · doi:10.1002/nav.3800010110.
[22] R. Jovanovic & S. Vo à (2021). Fixed set search application for minimizing the makespan on unrelated parallel machines with sequence-dependent setup times. Applied Soft Computing, 110, 107521. https://doi.org/10.1016/j.asoc.2021.107521. · doi:10.1016/j.asoc.2021.107521.
[23] W. Karush (1965). A counterexample to a proposed algorithm for optimal sequencing of jobs. Operations Research, 13(2), 323-325. https://doi.org/10.1287/opre.13.2.323. · doi:10.1287/opre.13.2.323.
[24] V. Kayvanfar, I. Mahdavi & GH. M. Komaki (2013). A drastic hybrid heuristic algo-rithm to approach to JIT policy considering controllable processing times. The International Journal of Advanced Manufacturing Technology, 69(1-4), 257-267. https://doi.org/10.1007/ s00170-013-5012-z · doi:10.1007/s00170-013-5012-z
[25] J. D. Little, K. G. Murty, D. W. Sweeney & C. Karel (1963). An algorithm for the traveling salesman problem. Operations Research, 11(6), 972-989. https://doi.org/10.1287/opre.11.6. 972. · Zbl 0161.39305 · doi:10.1287/opre.11.6.972.
[26] Z. A. Lomnicki (1965). A “branch-and-bound” algorithm for the exact solution of the three-machine scheduling problem. Journal of The Operational Research Society, 16(1), 89-100. https: //doi.org/10.1057/jors.1965.7. · doi:10.1057/jors.1965.7.
[27] C. S. McCahon & E.S. Lee (1990). Job sequencing with fuzzy processing times. Computers & Mathematics with Applications, 19(7), 31-41. https://doi.org/10.1016/0898-1221(90)90191-L. · Zbl 0693.90053 · doi:10.1016/0898-1221(90)90191-L.
[28] G.B. Mc-Mahon & P.G. Burton (1967). Flow shop scheduling with branch and bound method. Operation Research, 15(3), 473-481. https://doi.org/10.1287/opre.15.3.473 · doi:10.1287/opre.15.3.473
[29] E. Mokotoff (2001). Parallel machine scheduling problems: A survey. Asia-Pacific Journal of Operational Research, 18(2), 193-242. · Zbl 1042.90564
[30] S. Sharma & D. Gupta (2011). Minimizing rental cost under specified rental policy in two stage flow shop, the processing time associated with probabilities including break-down interval and job block criteria. European Journal of Business and Management, 3(2), 85-103.
[31] T. P. Singh & D. Gupta (2005). Minimizing rental cost in two stage flow shop, the processing time associated with probabilies including job block. Reflections Des Era Journal of Mathemat-ical Sciences, 1(2), 107-120.
[32] T. P. Singh & S. Gupta (2008). Minimization of rental cost in 3-stage flow shop with parallel machines including transportation time. Acta Cinencia Indica, 34(2), 629-634. · Zbl 1257.90023
[33] W. E. Smith (1956). Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3(1-2), 59-66. https://doi.org/10.1002/nav.3800030106 · doi:10.1002/nav.3800030106
[34] R. D. Smith & R. A. Dudek (1967). A general algorithm for solution of the n-job, M -machine sequencing problem of the flow shop. Operations Research, 15(1), 71-82. https://doi.org/10. 1287/opre.15.1.71. · Zbl 0189.19801 · doi:10.1287/opre.15.1.71.
[35] J. Sulaiman, M. K. M. Ali, P. M. Tuah, S. M. Yasir & W. C. F. Lee (2017). Productivity cost model in 308 ROSS chicken poultry systems: Case study of ccontract farming in rural de-velopment cooperative. Malaysian Journal of Mathematical Sciences, 11(S), 17-33.
[36] E. Teymourian, V. Kayvanfar, GH. M. Komaki & M. Khodarahmi (2016). An enhanced intel-ligent water drops algorithm for scheduling of an agile manufacturing system. International Journal of Information Technology & Decision Making, 15(2), 239-266. https://doi.org/10.1016/ j.ins.2015.11.036. · doi:10.1016/j.ins.2015.11.036.
[37] L. Wu, Y. Zhao, Y. Feng, B. Niu & X. Xu (2021). Minimizing makespan of stochastic customer orders in cellular manufacturing systems with parallel machines. Computers & Operations Research, 125, 105101.https://doi.org/10.1016/j.cor.2020.105101. · Zbl 1458.90389 · doi:10.1016/j.cor.2020.105101.
[38] W.C. Yeh, P. J. Lai, W. C. Lee & M. C. Chuang (2014). Parallel-machine scheduling to mini-mize makespan with fuzzy processing times and learning effects. Information Sciences, 269, 142-158. https://doi.org/10.1016/j.ins.2013.10.023. · Zbl 1339.90156 · doi:10.1016/j.ins.2013.10.023.
[39] L. A. Zadeh (1996). Fuzzy sets. In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh, pp. 394-432. World Scientific, Binghamton, USA. https://doi.org/10.1142/ 9789814261302_0021. · Zbl 0873.01048 · doi:10.1142/9789814261302_0021.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.