×

Usage of guided wave resonance phenomena for defect detection in laminate elastic structures. (English) Zbl 1496.74083

Marmo, Francesco (ed.) et al., Mathematical applications in continuum and structural mechanics. Cham: Springer. Adv. Struct. Mater. 127, 1-12 (2022).
Summary: Since the values of natural scattering resonance frequencies strongly depend on the size and shape of the scatterer, it seems worthwhile to use this information for the enhancement of damage characterization capabilities of SHM systems. In this chapter, potential possibility of such approach is demonstrated and discussed in the example of guided wave interaction with a flat bottom hole in a metallic plate that simulates deep pitting corrosion. A good agreement of the theoretically predicted and experimentally obtained scattering resonance frequencies has confirmed the capability of this approach, which is illustrated by examples of the defect’s size reconstruction.
For the entire collection see [Zbl 1478.74002].

MSC:

74J20 Wave scattering in solid mechanics
74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
Full Text: DOI

References:

[1] Alibert JJ, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy de-pending on higher displacement gradients. Math Mech Solids 8(1) · Zbl 1039.74028
[2] Auffray N, dell’Isola F, Eremeyev V, Madeo A, Rosi G (2013) Analytical continuum mechanics à la Hamilton-Piola: least action principle for second gradient continua and capillary fluids. Math Mech Solids · Zbl 1327.76008
[3] Barchiesi E, Spagnuolo M, Placidi L (2018) Mechanical metamaterials: a state of the art. Math Mech Solids · Zbl 1425.74036
[4] Barchiesi E, dell’Isola F, Hild F, Seppecher P (2020b) Two-dimensional continua capable of large elastic extension in two independent directions: asymptotic homogenization, numerical simulations and experimental evidence. Mech Res Commun 103
[5] Barchiesi E, Eugster SR, dell’isola F, Hild F (2020c) Large in-plane elastic deformations of bi-pantographic fabrics: asymptotic homogenization and experimental validation. Math Mech Solids 25(3):739-767 · Zbl 1446.74171
[6] Barchiesi E, Yang H, Tran CA, Placidi L, Müller WH (2020a) Computation of brittle fracture propagation in strain gradient materials by the FEniCS library. Math Mech Solids · Zbl 07357405
[7] Cegla, FB; Rohde, A.; Veidt, M., Analytical prediction and experimental measurement for mode conversion and scattering of plate waves at non-symmetric circular blind holes in isotropic plates, Wave Motion, 45, 162-177 (2008) · Zbl 1231.74221 · doi:10.1016/j.wavemoti.2007.05.005
[8] Del Vescovo, D.; Giorgio, I., Dynamic problems for metamaterials: review of existing models and ideas for further research, Int J Eng Sci, 80, 153-172 (2014) · Zbl 1423.74039 · doi:10.1016/j.ijengsci.2014.02.022
[9] dell’Isola F, Seppecher P, Madeo (2012) A How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Z Für Angew Math Und Phys 63(6) · Zbl 1330.76016
[10] dell’Isola F, Andreaus U, Placidi L (2015) At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 20(8) · Zbl 1330.74006
[11] dell’Isola F, Della Corte A, Giorgio I (2016a) Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math Mech Solids · Zbl 1371.74024
[12] dell’Isola F, Della Corte A, Greco L, Luongo A (2016b) Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a perturbation solution. Int J Solids Struct
[13] dell’Isola F, Giorgio I, Pawlikowski M, Rizzi N (2016) Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc R Soc A 472(2185)
[14] dell’Isola F, Cuomo M, Greco L, Della Corte A (2017) Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J Eng Math · Zbl 1390.74028
[15] dell’Isola, F.; Seppecher, P.; Alibert, JJ; Lekszycki, T.; Grygoruk, R.; Pawlikowski, M.; Steigmann, D.; Giorgio, I.; Andreaus, U.; Turco, E.; Gołaszewski, M.; Rizzi, N.; Boutin, C.; Eremeyev, VA; Misra, A.; Placidi, L.; Barchiesi, E.; Greco, L.; Cuomo, M.; Cazzani, A.; Della Corte, A.; Battista, A.; Scerrato, D.; Eremeeva, IZ; Rahali, Y.; Ganghoffer, JF; Müller, W.; Ganzosch, G.; Spagnuolo, M.; Phaff, A.; Barcz, K.; Hoschke, K.; Neggers, J.; Hild, F., Pantographic metamaterials: an example of mathematically driven design and of its technological challenges, Continuum Mech Thermodyn, 31, 4, 851-884 (2019) · doi:10.1007/s00161-018-0689-8
[16] dell’Isola, F.; Seppecher, P.; Spagnuolo, M.; Barchiesi, E.; Hils, F.; Lekszycki, T.; Giorgio, I.; Placidi, L.; Andreaus, U.; Cuomo, M.; Eugster, SR; Pfaff, A.; Hoschke, K.; Langkemper, R.; Turco, E.; Sarikaya, R.; Misra, A.; De Angelo, M.; D’Annibale, F.; Bouterf, A.; Pinelli, X.; Misra, A.; Desmorat, B.; Pawlikowski, M.; Dupuy, C.; Scerrato, D.; Peyre, P.; Laudato, M.; Manzari, L.; Göransoon, P.; Hesch, C.; Hesch, S.; Franciosi, P.; Dirrenberger, J.; Maurin, F.; Vangelatos, Z.; Grigoropoulos, C.; Melissinaki, V.; Farsari, M.; Muller, W.; Abali, BE; Liebold, C.; Ganzosch, G.; Harrison, P.; Drobnicki, R.; Igumnov, L.; Alzahrani, F.; Hayat, T., Advances in pantographic structures: design, manufacturing, models, experiments and image analyses, Continuum Mech Thermodyn, 31, 4, 1231-1282 (2019) · doi:10.1007/s00161-019-00806-x
[17] Glushkov E, Glushkova N, Golub MV, Moll J, Fritzen CP (2012) Wave energy trapping and localization in a plate with a delamination. Smart Mater. Struct. 21
[18] Glushkov, E.; Glushkova, N.; Eremin, A.; Lammering, R., Trapped mode effects in notched plate-like structures, J Sound Vib, 358, 142-151 (2015) · doi:10.1016/j.jsv.2015.08.007
[19] Glushkov, EV; Glushkova, NV; Eremin, AA; Lammering, R., Guided wave propagation and diffraction in plates with obstacles: resonance transmission and trapping mode effects, Phys Procedia, 70, 447-450 (2015) · doi:10.1016/j.phpro.2015.08.282
[20] Glushkov, E.; Glushkova, N.; Eremin, A.; Lammering, R., Trapped modes and resonance wave transmission in a plate with a system of notches, J Sound Vib, 412, 360-371 (2018) · doi:10.1016/j.jsv.2017.09.041
[21] Grahn, T., Lamb wave scattering from a circular partly through-thickness hole in a plate, Wave Motion, 37, 63-80 (2008) · Zbl 1163.74359 · doi:10.1016/S0165-2125(02)00051-3
[22] Greco, F.; Luciano, R.; Serino, G.; Vaiana, N., A mixed explicit-implicit time integration approach for nonlinear analysis of base-isolated structures, Ann Solid Struct Mech, 10, 1-2, 17-29 (2018) · doi:10.1007/s12356-017-0051-z
[23] Hein, S.; Koch, L.; Nannen, L., Trapped modes and Fano resonances in two-dimensional acoustical duct cavity systems, J Fluid Mech, 692, 257-287 (2012) · Zbl 1250.76150 · doi:10.1017/jfm.2011.509
[24] Kishimoto, K.; Inoue, H.; Hamada, M.; Shibuya, T., Time frequency analysis of dispersive waves by means of wavelet transform, J Appl Mech, 62, 841-846 (1995) · Zbl 0842.73039 · doi:10.1115/1.2896009
[25] Krishnakumar K (1989) Micro-genetic algorithms for stationary and non-stationary function optimization. In: Proceedings SPIE 1196 intelligent control and adaptive systems. Rodriguez G, Philadelphia, PA, United States
[26] Lammering, R.; Gabbert, U.; Sinapius, M.; Schuster, T.; Wierach, P., Lamb-wave based structural health monitoring in polymer composites (2018), Cham, Switzerland: Springer International Publishing AG, Cham, Switzerland
[27] Marmo, F.; Sessa, S.; Rosati, L., Analytical solution of the Cerruti problem under linearly distributed horizontal loads over polygonal domains, J Elast, 124, 1, 27-56 (2016) · Zbl 1339.31003 · doi:10.1007/s10659-015-9560-3
[28] Marmo, F.; Toraldo, F.; Rosati, A.; Rosati, L., Numerical solution of smooth and rough contact problems, Meccanica, 53, 1415-1440 (2018) · Zbl 1390.74144 · doi:10.1007/s11012-017-0766-2
[29] Marmo, F.; Sessa, S.; Vaiana, N.; De Gregorio, D.; Rosati, L., Complete solutions of three-dimensional problems in transversely isotropic media, Continuum Mech Thermodyn, 32, 3, 775-802 (2020) · Zbl 1442.74049 · doi:10.1007/s00161-018-0733-8
[30] Placidi L, Barchiesi E, Turco E, Rizzi NL (2016) A review on 2D models for the description of pantographic fabrics. Z Für Angew Math Phys 67(5) · Zbl 1359.74019
[31] Placidi L, Andreaus U, Giorgio I (2017) Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J Eng Math · Zbl 1390.74018
[32] Rahali Y, Giorgio I, Ganghoffer JF, dell’Isola F (2015) Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int J Eng Sci 97 · Zbl 1423.74794
[33] Sciarra G, dell’Isola F, Coussy O (2007) Second gradient poromechanics. Int J Solids Struct 44(20) · Zbl 1166.74341
[34] Serpieri, R.; Sessa, S.; Rosati, L., A MITC-based procedure for the numerical integration of a continuum elastic-plastic theory of through-the-thickness-jacketed shell structures, Compos Struct, 191, 209-220 (2018) · doi:10.1016/j.compstruct.2018.02.031
[35] Sessa S, Marmo F, Vaiana N, Rosati L (2018) A computational strategy for eurocode 8-compliant analyses of reinforced concrete structures by seismic envelopes. J Earthquake Eng doi:10.1080/13632469.2018.1551161
[36] Solodov, I., Resonant ultrasonic activation of damage: application for diagnostic imaging, Res Nondestruct Eval, 28, 28-44 (2017) · doi:10.1080/09349847.2016.1259519
[37] Spagnuolo, M.; Franciosi, P.; dell’Isola, F., A Green operator-based elastic modeling for two-phase pantographic-inspired bi-continuous materials, Int J Solids Struct, 188, 282-308 (2020) · doi:10.1016/j.ijsolstr.2019.10.018
[38] Spagnuolo, M.; Yildizdag, ME; Andreaus, U.; Cazzani, AM, Are higher-gradient models also capable of predicting mechanical behavior in the case of wide-knit pantographic structures?, Math Mech Solids, 26, 1, 18-29 (2021) · Zbl 1486.74005 · doi:10.1177/1081286520937339
[39] Trotta, S.; Marmo, F.; Rosati, L., Analytical expression of the Eshelby tensor for arbitrary polygonal inclusions in two-dimensional elasticity, Compos B Eng, 106, 48-58 (2016) · doi:10.1016/j.compositesb.2016.09.010
[40] Turco, E.; Barchiesi, E., Equilibrium paths of Hencky pantographic beams in a three-point bending problem, Math Mech Complex Syst, 7, 4, 287-310 (2019) · Zbl 1434.74076 · doi:10.2140/memocs.2019.7.287
[41] Vaiana, N.; Spizzuoco, M.; Serino, G., Wire rope isolators for seismically base-isolated lightweight structures: experimental characterization and mathematical modeling, Eng Struct, 140, 498-514 (2017) · doi:10.1016/j.engstruct.2017.02.057
[42] Vaiana, N.; Sessa, S.; Marmo, F.; Rosati, L., Nonlinear dynamic analysis of hysteretic mechanical systems by combining a novel rate-independent model and an explicit time integration method, Nonlinear Dyn, 98, 4, 2879-2901 (2019) · Zbl 1430.37096 · doi:10.1007/s11071-019-05022-5
[43] Vaiana N, Sessa S, Rosati L (2021) A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena. Mech Syst Signal Process 146: 106984 doi:10.1016/j.ymssp.2020.106984
[44] Vemula, C.; Norris, AN, Flexural wave propagation and scattering on thin plates using Mindlin theory, Wave Motion, 26, 1-12 (1997) · Zbl 0923.73030 · doi:10.1016/S0165-2125(97)00016-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.