×

Novel aspects in pattern formation arise from coupling Turing reaction-diffusion and chemotaxis. (English) Zbl 1530.92015

Summary: Recent experimental studies on primary hair follicle formation and feather bud morphogenesis indicate a coupling between Turing-type diffusion driven instability and chemotactic patterning. Inspired by these findings we develop and analyse a mathematical model that couples chemotaxis to a reaction-diffusion system exhibiting diffusion-driven (Turing) instability. While both systems, reaction-diffusion systems and chemotaxis, can independently generate spatial patterns, we were interested in how the coupling impacts the stability of the system, parameter region for patterning, pattern geometry, as well as the dynamics of pattern formation. We conduct a classical linear stability analysis for different model structures, and confirm our results by numerical analysis of the system. Our results show that the coupling generally increases the robustness of the patterning process by enlarging the pattern region in the parameter space. Concerning time scale and pattern regularity, we find that an increase in the chemosensitivity can speed up the patterning process for parameters inside and outside of the Turing space, but generally reduces spatial regularity of the pattern. Interestingly, our analysis indicates that pattern formation can also occur when neither the Turing nor the chemotaxis system can independently generate pattern. On the other hand, for some parameter settings, the coupling of the two processes can extinguish the pattern formation, rather than reinforce it. These theoretical findings can be used to corroborate the biological findings on morphogenesis and guide future experimental studies. From a mathematical point of view, this work sheds a light on coupling classical pattern formation systems from the parameter space perspective.

MSC:

92C15 Developmental biology, pattern formation
92C17 Cell movement (chemotaxis, etc.)
35K57 Reaction-diffusion equations
35B35 Stability in context of PDEs

Software:

ROWMAP

References:

[1] Bailleul, R.; Curantz, C.; Desmarquet-Trin Dinh, C.; Hidalgo, M.; Touboul, J.; Manceau, M., Symmetry breaking in the embryonic skin triggers directional and sequential plumage patterning, PLoS Biol, 17 (2019) · doi:10.1371/journal.pbio.3000448
[2] Barrio, R.; Varea, C.; Aragón, J.; Maini, P., A two-dimensional numerical study of spatial pattern formation in interacting Turing systems, Bull Math Biol, 61, 483-505 (1999) · Zbl 1323.92026 · doi:10.1006/bulm.1998.0093
[3] Berding, C., On the heterogeneity of reaction-diffusion generated pattern, Bull Math Biol, 49, 233-252 (1987) · Zbl 0616.92001 · doi:10.1016/S0092-8240(87)80044-7
[4] Chettibi, S.; Lawrence, A.; Young, J.; Lawrence, P.; Stevenson, R., Dispersive locomotion of human neutrophils in response to a steroid-induced factor from monocytes, J Cell Sci, 107, Pt 11, 3173-81 (1994) · doi:10.1242/jcs.107.11.3173
[5] Cho, S-W; Kwak, S.; Woolley, TE; Lee, M-J; Kim, E-J; Baker, RE; Kim, H-J; Shin, J-S; Tickle, C.; Maini, PK, Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth, Development, 138, 1807-1816 (2011) · doi:10.1242/dev.056051
[6] Diez A, Krause AL, Maini PK, Gaffney EA, Seirin-Lee S (2013) Turing pattern formation in reaction-cross-diffusion systems with a bilayer geometry. bioRxiv. https://www.biorxiv.org/content/early/2023/05/30/2023.05.30.542795.
[7] Domschke, P.; Trucu, D.; Gerisch, A.; Chaplain, MAJ, Structured models of cell migration incorporating molecular binding processes, J Math Biol, 75, 1517-1561 (2017) · Zbl 1373.35317 · doi:10.1007/s00285-017-1120-y
[8] Economou, AD; Ohazama, A.; Porntaveetus, T.; Sharpe, PT; Kondo, S.; Basson, MA; Gritli-Linde, A.; Cobourne, MT; Green, J., Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate, Nat Genet, 44, 348-351 (2012) · doi:10.1038/ng.1090
[9] Economou, AD; Monk, NA; Green, JB, Perturbation analysis of a multi-morphogen Turing reaction-diffusion stripe patterning system reveals key regulatory interactions, Development, 147 (2020) · doi:10.1242/dev.190553
[10] Gerisch A (2001) Numerical methods for the simulation of taxis-diffusion-reaction systems, Ph.D. Thesis. Martin-Luther-Universität Halle-Wittenberg
[11] Gerisch, A.; Chaplain, M., Robust numerical methods for taxis-diffusion-reaction systems: applications to biomedical problems, Math Comput Model, 43, 49-75 (2006) · Zbl 1086.92025 · doi:10.1016/j.mcm.2004.05.016
[12] Gierer, A.; Meinhardt, H., A theory of biological pattern formation, Kybernetik, 12, 30-39 (1972) · Zbl 1434.92013 · doi:10.1007/bf00289234
[13] Gierer, A.; Meinhardt, H., Applications of a theory of biological pattern formation based on lateral inhibition, J Cell Sci, 15, 321-346 (1974) · Zbl 0297.92007 · doi:10.1242/jcs.15.2.321
[14] Glover, JD; Wells, KL; Matthäus, F.; Painter, KJ; Ho, W.; Riddell, J.; Johansson, JA; Ford, MJ; Jahoda, CAB; Klika, V.; Mort, RL; Headon, DJ, Hierarchical patterning modes orchestrate hair follicle morphogenesis, PLoS Biol, 15, 1-31 (2017) · doi:10.1371/journal.pbio.2002117
[15] Gray, P.; Scott, S., Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability, Chem Eng Sci, 38, 29-43 (1983) · doi:10.1016/0009-2509(83)80132-8
[16] Harris, MP; Williamson, S.; Fallon, JF; Meinhardt, H.; Prum, RO, Molecular evidence for an activator-inhibitor mechanism in development of embryonic feather branching, Proc Natl Acad Sci, 102, 11734-11739 (2005) · doi:10.1073/pnas.0500781102
[17] Hillen, T.; Painter, KJ, A user’s guide to PDE models for chemotaxis, J Math Biol, 58, 183-217 (2009) · Zbl 1161.92003 · doi:10.1007/s00285-008-0201-3
[18] Ho, WKW; Freem, L.; Zhao, D.; Painter, KJ; Woolley, TE; Gaffney, EA; McGrew, MJ; Tzika, A.; Milinkovitch, MC; Schneider, P.; Drusko, A.; Matthäus, F.; Glover, JD; Wells, KL; Johansson, JA; Davey, MG; Sang, HM; Clinton, M.; Headon, DJ, Feather arrays are patterned by interacting signalling and cell density waves, PLoS Biol, 17 (2019) · doi:10.1371/journal.pbio.3000132
[19] Horstmann, D., From until present: the Keller-Segel model in chemotaxis and its consequences I, Jahresber Dtsch Math Verein, 105, 2003, 103-165 (2003) · Zbl 1071.35001
[20] Hundsdorfer, W.; Koren, B.; vanLoon, M.; Verwer, J., A positive finite-difference advection scheme, J Comput Phys, 117, 35-46 (1995) · Zbl 0860.65073 · doi:10.1137/0705041
[21] Kaelin, CB; McGowan, KA; Barsh, GS, Developmental genetics of color pattern establishment in cats, Nat Commun, 12, 5584 (2021) · doi:10.1038/s41467-021-25348-2
[22] Keller, EF; Segel, LA, Initiation of slime mold aggregation viewed as an instability, J Theor Biol, 26, 399-415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[23] Keller, EF; Segel, LA, Model for chemotaxis, J Theor Biol, 30, 225-234 (1971) · Zbl 1170.92307 · doi:10.1016/0022-5193(71)90050-6
[24] Krause, AL; Klika, V.; Woolley, TE; Gaffney, EA, From one pattern into another: analysis of Turing patterns in heterogeneous domains via WKBJ, J R Soc Interface, 17, 20190621 (2020) · doi:10.1098/rsif.2019.0621
[25] Landge, AN; Jordan, BM; Diego, X.; Müller, P., Pattern formation mechanisms of self-organizing reaction-diffusion systems, Dev Biol, 460, 2-11 (2020) · doi:10.1016/j.ydbio.2019.10.031
[26] Levenberg, K., A method for the solution of certain non-linear problems in least squares, Q Appl Math, 2, 164-168 (1944) · Zbl 0063.03501 · doi:10.1090/qam/10666
[27] Macfarlane, FR; Chaplain, MAJ; Lorenzi, T., A hybrid discrete-continuum approach to model Turing pattern formation, Math Biosci Eng, 17, 7442-7479 (2020) · Zbl 1468.92020 · doi:10.3934/mbe.2020381
[28] Marcon, L.; Diego, X.; Sharpe, J.; Müller, P., High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals, Elife, 5 (2016) · doi:10.7554/eLife.14022
[29] Marquardt, D., An algorithm for least-squares estimation of nonlinear parameters, SIAM J Appl Math, 11, 431-441 (1963) · Zbl 0112.10505 · doi:10.1137/0111030
[30] Michon, F.; Forest, L.; Collomb, E.; Demongeot, J.; Dhouailly, D., BMP2 and BMP7 play antagonistic roles in feather induction, Development, 135, 2797-2805 (2008) · doi:10.1242/dev.018341
[31] Murray, J., Mathematical biology II: spatial models and biochemical applications (2003), Berlin: Springer, Berlin · Zbl 1006.92002 · doi:10.1007/b98869
[32] Nakamura, T.; Mine, N.; Nakaguchi, E.; Mochizuki, A.; Yamamoto, M.; Yashiro, K.; Meno, C.; Hamada, H., Generation of robust left-right asymmetry in the mouse embryo requires a self-enhancement and lateral-inhibition system, Dev Cell, 11, 495-504 (2006) · doi:10.1016/j.devcel.2006.08.002
[33] Othmer, HG; Scriven, LE, Interactions of reaction and diffusion in open systems, Ind Eng Chem Fundam, 8, 302-313 (1969) · doi:10.1021/i160030a020
[34] Painter, KJ, Mathematical models for chemotaxis and their applications in self-organisation phenomena, J Theor Biol, 481, 162-182 (2019) · Zbl 1422.92025 · doi:10.1016/j.jtbi.2018.06.019
[35] Painter, KJ; Hillen, T., Volume-filling and quorum-sensing in models for chemosensitive movement, Can Appl Math Q, 10, 501-542 (2002) · Zbl 1057.92013
[36] Painter, K.; Maini, P.; Othmer, HG, Stripe formation in juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis, Proc Natl Acad Sci, 96, 5549-5554 (1999) · doi:10.1073/pnas.96.10.55
[37] Painter, KJ; Hunt, GS; Wells, KL; Johansson, JA; Headon, DJ, Towards an integrated experimental-theoretical approach for assessing the mechanistic basis of hair and feather morphogenesis, Interface Focus, 2, 433-450 (2012) · doi:10.1098/rsfs.2011.0122
[38] Painter, KJ; Bloomfield, JM; Sherratt, JA; Gerisch, A., A nonlocal model for contact attraction and repulsion in heterogeneous cell populations, Bull Math Biol, 77, 1132-1165 (2015) · Zbl 1335.92026 · doi:10.1007/s11538-015-0080-x
[39] Painter, KJ; Ho, W.; Headon, DJ, A chemotaxis model of feather primordia pattern formation during avian development, J Theor Biol, 437, 225-238 (2018) · Zbl 1394.92021 · doi:10.1016/j.jtbi.2017.10.026
[40] Painter, KJ; Ptashnyk, M.; Headon, DJ, Systems for intricate patterning of the vertebrate anatomy, Philos Trans R Soc A, 379, 20200270 (2021) · doi:10.1098/rsta.2020.0270
[41] Pearson, JE, Complex patterns in a simple system, Science, 261, 189-192 (1993) · doi:10.1126/science.261.5118.189
[42] Peiffer, V.; Gerisch, A.; Vandepitte, D.; Van Oosterwyck, H.; Geris, L., A hybrid bioregulatory model of angiogenesis during bone fracture healing, Biomech Model Mechanobiol, 10, 383-395 (2011) · doi:10.1007/s10237-010-0241-7
[43] Raspopovic, J.; Marcon, L.; Russo, L.; Sharpe, J., Digit patterning is controlled by a BMP-Sox9-Wnt Turing network modulated by morphogen gradients, Science, 345, 566-570 (2014) · doi:10.1126/science.1252960
[44] Riddell J, Noureen SR, Sedda L, Glover JD, Ho WKW, Bain CA, Berbeglia A, Brown H, Anderson C, Chen Y, Crichton ML, Yates CA, Mort RL, Headon DJ (2023) Newly born mesenchymal cells disperse through a rapid mechanosensitive migration. bioRxiv. https://www.biorxiv.org/content/early/2023/01/28/2023.01.27.525849. https://arxiv.org/abs/https://www.biorxiv.org/content/early/2023/01/28/2023.01.27.525849.full.pdf
[45] Sala, FG; Del Moral, P-M; Tiozzo, C.; Alam, DA; Warburton, D.; Grikscheit, T.; Veltmaat, JM; Bellusci, S., FGF10 controls the patterning of the tracheal cartilage rings via Shh, Development, 138, 273-282 (2011) · doi:10.1242/dev.051680
[46] Schnakenberg, J., Simple chemical reaction systems with limit cycle behaviour, J Theor Biol, 81, 389-400 (1979) · doi:10.1016/0022-5193(79)90042-0
[47] Schweisguth, F.; Corson, F., Self-organization in pattern formation, Dev Cell, 49, 659-677 (2019) · doi:10.1016/j.devcel.2019.05.019
[48] Seirin Lee, S.; Gaffney, E.; Monk, N., The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems, Bull Math Biol, 72, 2139-2160 (2010) · Zbl 1201.92021 · doi:10.1007/s11538-010-9532-5
[49] Shyer, AE; Rodrigues, AR; Schroeder, GG; Kassianidou, E.; Kumar, S.; Harland, RM, Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin, Science, 357, 811-815 (2017) · doi:10.1126/science.aai78
[50] Sweby, PK, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J Numer Anal, 21, 995-1011 (1984) · Zbl 0565.65048 · doi:10.1137/0721062
[51] Turing, AM, The chemical basis of morphogenesis, Philos Trans R Soc Lond B, 237, 37-72 (1952) · Zbl 1403.92034 · doi:10.1016/S0092-8240(05)80008-4
[52] Villa, C.; Gerisch, A.; Chaplain, MA, A novel nonlocal partial differential equation model of endothelial progenitor cell cluster formation during the early stages of vasculogenesis, J Theor Biol, 534 (2022) · Zbl 1480.92032 · doi:10.1016/j.jtbi.2021.110963
[53] Walton, KD; Whidden, M.; Kolterud, Å.; Shoffner, SK; Czerwinski, MJ; Kushwaha, J.; Parmar, N.; Chandhrasekhar, D.; Freddo, AM; Schnell, S., Villification in the mouse: Bmp signals control intestinal villus patterning, Development, 143, 427-436 (2016) · doi:10.1242/dev.130112
[54] Weiner, R.; Schmitt, BA; Podhaisky, H., ROWMAP—a ROW-code with Krylov techniques for large stiff ODEs, Appl Numer Math, 25, 303-319 (1997) · Zbl 0895.65035 · doi:10.1016/S0168-9274(97)00067-6
[55] Yang, L.; Epstein, IR, Oscillatory Turing patterns in reaction-diffusion systems with two coupled layers, Phys Rev Lett, 90 (2003) · doi:10.1103/PhysRevLett.90.178303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.