×

Regularity of optimal transport on compact, locally nearly spherical, manifolds. (English) Zbl 1200.58025

Summary: Given a couple of smooth positive measures of same total mass on a compact connected Riemannian manifold \(M\), we look for a smooth optimal transportation map \(G\), pushing one measure to the other at a least total squared distance cost, directly by using the continuity method to produce a classical solution of the elliptic equation of Monge-Ampère type satisfied by the potential function \(u\), such that \(G = \exp(\operatorname{grad} u)\). This approach boils down to proving an a priori upper bound on the Hessian of \(u\), which was done on the flat torus by the first author. The recent local \(C^{2}\) estimate of Ma-Trudinger-Wang enabled Loeper to treat the standard sphere case by overcoming two difficulties, namely: in collaboration with the first author, he kept the image \(G(m)\) of a generic point \(m \in M\), uniformly away from the cut-locus of \(m\); he checked a fourth-order inequality satisfied by the squared distance cost function, proving its so-called (strict) regularity. In the present paper, we treat along the same lines the case of manifolds with curvature sufficiently close to 1 in \(C^{2}\) norm specifying and proving a conjecture stated by Trudinger.

MSC:

58J90 Applications of PDEs on manifolds
58J05 Elliptic equations on manifolds, general theory
90B06 Transportation, logistics and supply chain management
35J96 Monge-Ampère equations
Full Text: DOI

References:

[1] Delanoe, Gu nther Einige Sa tze u ber das Volumenelement eines Riemannschen Raumes Publ Regularity of optimal transport on manifolds Equations hessiennes complexes sur des varie te s ka hle riennes compactes PhD Thesis Univ Nice Sophia Antipolis, Math Debrecen 7 pp 78– (1960)
[2] Grove, A generalized sphere theorem, Math 106 pp 201– (1977) · Zbl 0341.53029
[3] Delanoe, Lie solutions of Riemannian transport equations on compact manifolds Di, Geom Appl 26 pp 327– (2008) · Zbl 1140.58006 · doi:10.1016/j.difgeo.2007.11.025
[4] Cordero, Erausquin Schmuckenschla ger A Riemannian interpolation inequality a la Borell Brascamp and Lieb Invent, math pp 146– (2001)
[5] Gangbo, The geometry of optimal transportation Acta, Math pp 177– (1996) · Zbl 0887.49017
[6] Ebin, Groups of di eomorphisms and the motion of an incompressible fluid, Math 92 pp 102– (1970)
[7] Aubin, Nonlinear analysis on manifolds Monge Ampe re equations Grundl Springer New York, math Wiss pp 252– (1982)
[8] Gilbarg, Elliptic Partial Di erential Equations of Second Order Grundl Springer - Verlag Berlin - Heidelberg nd ed revised rd printing, math Wiss 2 (1977)
[9] Klingenberg, Contributions to Riemannian geometry in the large, Math pp 69– (1959) · Zbl 0133.15003
[10] Pogorelov, The Minkowski Multidimensional Problem Scripta Ser Winston Washing - ton, Math (1978)
[11] Delanoe, Gradient rearrangement for di eomorphisms of a compact manifold Di no, Geom Appl 20 pp 145– (2004) · Zbl 1039.58008 · doi:10.1016/j.difgeo.2003.10.003
[12] Figalli, Ri ord Continuity of optimal transport maps and convexity of injectivity domains on small deformations of the two - sphere Comm Pure LXII no, Appl Math 12 pp 1670– (2009)
[13] Trudinger, Xi - Nan Ma and Jia Wang Regularity of potential functions of the optimal transporta - tion problem Arch, Rat Mech Anal pp 177– (2005)
[14] Gray, Tubes nd ed Birkha user, Math pp 221– (2004)
[15] Trudinger, Recent developments in elliptic partial di erential equations of Monge Ampe re type Proc Intern Congress Math, Math Soc Edit pp 292– (2006)
[16] Brenier, A geometric approximation to the Euler equations : the Vlasov Monge Ampe re system, Geom Funct Anal 14 pp 1182– (2004) · Zbl 1075.35046 · doi:10.1007/s00039-004-0488-1
[17] Kim, Young - Heon Continuity curvature and the general covariance of optimal transporta - tion to appear, Eur Math Soc
[18] Petersen, Riemannian Geometry Grad Texts Springer - Verlag, Math pp 171– (1998)
[19] Delanoe, Di erential geometric heuristics for Riemannian optimal transportation maps in : Di erential Equations Geometry Symmetries and Integrability Proceedings Abel Symposium Lychagin eds Abel Springer - Verlag, Symp Ser 5 pp 49– (2008)
[20] Bochner, Curvature and Betti numbers Princeton Univ, Math Stud 32 (1953)
[21] McCann, Polar factorization of maps on Riemannian manifolds, Geom Funct Anal 11 pp 589– (2001) · Zbl 1011.58009 · doi:10.1007/PL00001679
[22] Klingenberg, U ber Riemannsche Mannigfaltigkeiten mit positiver Kru mmung Comm, Math Helv 35 pp 47– (1961) · Zbl 0133.15005 · doi:10.1007/BF02567004
[23] Sakai, Riemannian Geometry Transl, Math Monogr Math Soc pp 149– (1992)
[24] Cordero, Erausquin Sur le transport de mesures pe riodiques, Acad Sci Paris pp 329– (1999)
[25] Cheeger, Comparison Theorems in Riemannian Geometry North - Holland Math, Libr 9 (1975)
[26] Brenier, Polar factorization and monotone rearrangement of vector - valued functions Comm Pure Appl, Math 44 pp 375– (1991) · Zbl 0738.46011
[27] Bishop, A relation between volume mean curvature and diameter, Math Soc Notices 10 pp 364– (1963)
[28] Brenier, De composition polaire et re arrangement monotone des champs de vecteurs Paris, Acad Sci pp 305– (1987) · Zbl 0652.26017
[29] Loeper, Regularity of optimal transport in curved geometry : the nonfocal case Duke Math to appear, J · Zbl 1192.53041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.