×

On a fully nonlinear Yamabe problem. (English) Zbl 1121.53027

Sur une variété \((M,g_0)\) Riemannienne compacte orientée, on note \(\sigma_k(g_0)\) la \(k^{\text{ième}}\) fonction symétrique des valeurs propres du tenseur de Schouten. Le problème considéré est: \(k\) étant fixé, existe-t-il une métrique \(g\) conforme à \(g_0\) \((g\in [g_0])\), tell que \(\sigma_k(g)=\text{const.}\) Ce problème est une généralisation du problème de Yamabe (\(\sigma_1(g)\) est proportionnel à \(R(g)\)). On suppose que \(\sigma_j(g_0)> 0\) partout et pour tout \(j\leq k\). On dira que \(g\in\Gamma^+_k\).
Le théorème principal est: Si \(g_0\in\Gamma^+_q\), si la dimension \(n> 8\) et si la variété n’est pas localement conformement plate, alors if existe \(g\in[g_0]\) avec \(\sigma_2([g])=\text{const.}\) Les auteurs considèrent une fonctionnelle \(F(g)= [\text{vol}(g)]^{4/n)- 1}\int_M \sigma_2(g)\,dv\) et notent \(Y(g_0)= \text{inf\,}F(g)\) sur les métriques \(g\in [g_0]\cap\Gamma^+_2\).
Etape 1: Si \(g_0\in \Gamma^+_2\) et \(n> 4\) le problème a une solution \(s_i\,Y(M,[g_0])< Y(S_n, g_{can})\).
Etape 2: \(S_i g_0\in\Gamma^+_2\), \(n> 8\) et le tenseur de Weyl \(W\neq 0\) alors \(Y(M,[g_0])< Y(S_n, g_{can})\). Pour l’étape 1, on déforme, la métrique de départ par une équation parabolique.
Pour l’étape 2, il s’agit de mettre en évidence une métrique \(\widetilde g\in [g_0]\cap \Gamma^+_2\) telle que \(\Gamma(\widetilde g)< Y(S_n)\) sous l’hypothese nécessaire \(W\neq 0\) partout. Ceci est réalisé pour \(n> 8\). Ce problème est beaucoup étudié, pour \(\sigma_s\) il s’agit du problème de Yamabe dans le cas positif. A. Li et Y. Y. Li ont résolu le problème pour tout \(k\) lorsque la variété est localement conformément plate.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions

References:

[1] Andrews B. , Monotone quantities and unique limits for evolving convex hypersurfaces , Internat. Math. Res. Notices 1997 ( 1997 ) 1001 - 1031 . MR 1486693 | Zbl 0892.53002 · Zbl 0892.53002 · doi:10.1155/S1073792897000640
[2] Aubin T. , Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire , J. Math. Pures Appl. 55 ( 1976 ) 269 - 296 . MR 431287 | Zbl 0336.53033 · Zbl 0336.53033
[3] Aubin T. , Li Y. , On the best Sobolev inequality , J. Math. Pures Appl. 78 ( 1999 ) 353 - 387 . MR 1696357 | Zbl 0944.46027 · Zbl 0944.46027 · doi:10.1016/S0021-7824(99)00012-4
[4] Brendle S. , Viaclovsky J. , A variational characterization for \({\sigma }_{n/2}\) , Calc. Var. Partial Differential Equations 20 ( 2004 ) 399 - 402 . MR 2071927 | Zbl 1059.53033 · Zbl 1059.53033 · doi:10.1007/s00526-003-0234-9
[5] Caffarelli L. , Nirenberg L. , Spruck J. , The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian , Acta Math. 155 ( 1985 ) 261 - 301 . MR 806416 | Zbl 0654.35031 · Zbl 0654.35031 · doi:10.1007/BF02392544
[6] Chang A. , Gursky M. , Yang P. , An equation of Monge-Ampère type in conformal geometry, and four manifolds of positive Ricci curvature , Ann. of Math. 155 ( 2002 ) 709 - 787 . MR 1923964 | Zbl 1031.53062 · Zbl 1031.53062 · doi:10.2307/3062131
[7] Chang A. , Gursky M. , Yang P. , An a priori estimate for a fully nonlinear equation on Four-manifolds , J. Anal. Math. 87 ( 2002 ) 151 - 186 . MR 1945280 | Zbl 1067.58028 · Zbl 1067.58028 · doi:10.1007/BF02868472
[8] Chang A. , Gursky M. , Yang P. , Entire solutions of a fully nonlinear equation , in: Lectures on Partial Differential Equations , New Stud. Adv. Math. , vol. 2 , Int. Press , Somerville, MA , 2003 , pp. 43 - 60 . MR 2055838 | Zbl 02072579 · Zbl 1183.53035
[9] Chou K.-S. , On a real Monge-Ampère functional (K.S. Tso) , Invent. Math. 101 ( 1990 ) 425 - 448 . MR 1062970 | Zbl 0724.35040 · Zbl 0724.35040 · doi:10.1007/BF01231510
[10] Chou K.-S. , Wang X.-J. , A variational theory of the Hessian equation , Comm. Pure Appl. Math. 54 ( 2001 ) 1029 - 1064 . MR 1835381 | Zbl 1035.35037 · Zbl 1035.35037 · doi:10.1002/cpa.1016
[11] Garding L. , An inequality for hyperbolic polynomials , J. Math. Mech. 8 ( 1959 ) 957 - 965 . MR 113978 | Zbl 0090.01603 · Zbl 0090.01603
[12] Ge Y., Wang G ., On a conformal quotient equation, in preparation .
[13] González M. d. M ., Removability of singularities for a class of fully non-linear elliptic equations Preprint , 2004. MR 2263673
[14] Gromov M. , Lawson H.B. , The classification of simply connected manifolds of positive scalar curvature , Ann. of Math. (2) 111 ( 1980 ) 423 - 434 . MR 577131 | Zbl 0463.53025 · Zbl 0463.53025 · doi:10.2307/1971103
[15] Guan P. , Lin C.-S. , Wang G. , Schouten tensor and some topological properties , Comm. Anal. Geom. 13 ( 2005 ) 845 - 860 . Article | MR 2216144 | Zbl 1110.53025 · Zbl 1110.53025 · doi:10.4310/CAG.2005.v13.n5.a2
[16] Guan P., Lin C.-S., Wang G ., Local gradient estimates for conformal quotient equations, Preprint . · Zbl 1121.53028 · doi:10.1142/S0129167X07004060
[17] Guan P. , Viaclovsky J. , Wang G. , Some properties of the Schouten tensor and applications to conformal geometry , Trans. Amer. Math. Soc. 355 ( 2003 ) 925 - 933 . MR 1938739 | Zbl 1022.53035 · Zbl 1022.53035 · doi:10.1090/S0002-9947-02-03132-X
[18] Guan P. , Wang G. , Local estimates for a class of fully nonlinear equations arising from conformal geometry , Int. Math. Res. Not. 2003 ( 2003 ) 1413 - 1432 . MR 1976045 | Zbl 1042.53021 · Zbl 1042.53021 · doi:10.1155/S1073792803212034
[19] Guan P. , Wang G. , A fully nonlinear conformal flow on locally conformally flat manifolds , J. reine angew. Math. 557 ( 2003 ) 219 - 238 . MR 1978409 | Zbl 1033.53058 · Zbl 1033.53058 · doi:10.1515/crll.2003.033
[20] Guan P. , Wang G. , Geometric inequalities on locally conformally flat manifolds , Duke Math. J. 124 ( 2004 ) 177 - 212 . Article | MR 2072215 | Zbl 1059.53034 · Zbl 1059.53034 · doi:10.1215/S0012-7094-04-12416-9
[21] Guan P. , Wang G. , A fully nonlinear conformal flow on locally conformally flat manifolds , math.DG/0112256 , v1 of [19]. arXiv · Zbl 1033.53058
[22] Gursky M. , Viaclovsky J. , Volume comparison and the \({\sigma }_{k}\)-Yamabe problem , Adv. in Math. 187 ( 2004 ) 447 - 487 . MR 2078344 | Zbl 1066.53081 · Zbl 1066.53081 · doi:10.1016/j.aim.2003.08.014
[23] Gursky M. , Viaclovsky J. , A fully nonlinear equation on 4-manifolds with positive scalar curvature , J. Differential Geom. 63 ( 2003 ) 131 - 154 . Article | MR 2015262 | Zbl 1070.53018 · Zbl 1070.53018
[24] Gursky M. , Viaclovsky J. , Prescribing symmetric functions of the eigenvalues of the Ricci tensor , Ann of Math., submitted for publication, math.DG/0409187 . arXiv · Zbl 1142.53027
[25] Habermann L. , Riemannian Metrics of Constant Mass and Moduli Spaces of Conformal Structures , Lecture Notes in Mathematics , vol. 1743 , Springer , Berlin , 2000 . MR 1790086 | Zbl 0964.58008 · Zbl 0964.58008 · doi:10.1007/BFb0103864
[26] Hebey E. , Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities , Courant Lecture Notes in Math. , vol. 5 , Courant Inst. of Math. Sci./Amer. Math. Soc. , New York/Providence, RI , 1999 . MR 1688256 | Zbl 0981.58006 · Zbl 0981.58006
[27] Krylov N. , Nonlinear Elliptic and Parabolic Equations of the Second Order , D. Reidel , Dordrecht , 1987 . MR 901759 | Zbl 0619.35004 · Zbl 0619.35004
[28] Lee J. , Parker T. , The Yamabe problem , Bull. Amer. Math. Soc. (N.S.) 17 ( 1987 ) 37 - 91 . Article | MR 888880 | Zbl 0633.53062 · Zbl 0633.53062 · doi:10.1090/S0273-0979-1987-15514-5
[29] Li A. , Li Y. , On some conformally invariant fully nonlinear equations , Comm. Pure Appl. Math. 56 ( 2003 ) 1416 - 1464 . MR 1988895 | Zbl 02002141 · Zbl 1155.35353 · doi:10.1002/cpa.10099
[30] Lions P.L. , Two remarks on the Monge-Ampère , Ann. Mat. Pura Appl. 142 ( 1985 ) 263 - 275 . MR 839040 | Zbl 0594.35023 · Zbl 0594.35023 · doi:10.1007/BF01766596
[31] Micallef M. , Wang M. , Metrics with nonnegative isotropic curvature , Duke Math. J. 72 ( 1993 ) 649 - 672 . Article | MR 1253619 | Zbl 0804.53058 · Zbl 0804.53058 · doi:10.1215/S0012-7094-93-07224-9
[32] Schoen R. , Conformal deformation of a Riemannian metric to constant curvature , J. Differential Geom. 20 ( 1984 ) 479 - 495 . MR 788292 | Zbl 0576.53028 · Zbl 0576.53028
[33] Sha J.-P. , Yang D.G. , Positive Ricci curvature on the connected sums of \({S}^{n}\times {S}^{m}\) , J. Differential Geom. 33 ( 1991 ) 127 - 137 . MR 1085137 | Zbl 0728.53027 · Zbl 0728.53027
[34] Sheng W. , Trudinger N. , Wang X. , The Yamabe problem for higher order curvatures , math.DG/0505463 . arXiv · Zbl 1133.53035
[35] Simon L. , Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems , Ann. of Math. 118 ( 1983 ) 525 - 571 . MR 727703 | Zbl 0549.35071 · Zbl 0549.35071 · doi:10.2307/2006981
[36] Trudinger N. , On imbeddings into Orlicz spaces and some applications , J. Math. Mech. 17 ( 1967 ) 473 - 483 . MR 216286 | Zbl 0163.36402 · Zbl 0163.36402
[37] Trudinger N. , Wang X.-J. , A Poincaré type inequality for Hessian integrals , Calc. Var. Partial Differential Equations 6 ( 4 ) ( 1998 ) 315 - 328 . MR 1624292 | Zbl 0927.58013 · Zbl 0927.58013 · doi:10.1007/s005260050093
[38] Viaclovsky J. , Conformal geometry, contact geometry and the calculus of variations , Duke J. Math. 101 ( 2 ) ( 2000 ) 283 - 316 . Article | MR 1738176 | Zbl 0990.53035 · Zbl 0990.53035 · doi:10.1215/S0012-7094-00-10127-5
[39] Viaclovsky J. , Conformally invariant Monge-Ampère equations: Global solutions , Trans. Amer. Math. Soc. 352 ( 2000 ) 4371 - 4379 . MR 1694380 | Zbl 0951.35044 · Zbl 0951.35044 · doi:10.1090/S0002-9947-00-02548-4
[40] Viaclovsky J. , Estimates and some existence results for some fully nonlinear elliptic equations on Riemannian manifolds , Comm. Anal. Geom. 10 ( 2002 ) 815 - 847 . MR 1925503 | Zbl 1023.58021 · Zbl 1023.58021
[41] Wang X.J. , A class of fully nonlinear elliptic equations and related functionals , Indiana Univ. Math. J. 43 ( 1994 ) 25 - 54 . MR 1275451 | Zbl 0805.35036 · Zbl 0805.35036 · doi:10.1512/iumj.1994.43.43002
[42] Yamabe H. , On a deformation of Riemannian structures on compact manifolds , Osaka Math. J. 12 ( 1960 ) 21 - 37 . MR 125546 | Zbl 0096.37201 · Zbl 0096.37201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.