×

Regularity of optimal transport maps on locally nearly spherical manifolds. (Régularité de l’application du transport optimal sur les variétés riemanniennes localement proches de La sphère.) (English. French summary) Zbl 1471.49034

Summary: Given a compact connected \(n\)-dimensional Riemannian manifold, we investigate the smoothness of the optimal transport map between the smooth densities with respect to the squared Riemannian distance cost. The optimal map is characterized by \(\exp (\operatorname{grad}\,u)\), where the potential function \(u\) satisfies a Monge-Ampère type equation. P. Delanoë [Commun. Anal. Geom. 23, No. 1, 11–89 (2015; Zbl 1310.53036)] showed the smoothness of \(u\) on the Riemannian surfaces when the scalar curvature is close to \(1\) in \(C^2\) norm. In this work, we study the regularity issue on Riemannian manifolds with curvature sufficiently close to curvature of round sphere in \(C^2\) norm in all dimensions and prove that the \({\mathcal{C}} \)-curvature on such Riemannian manifolds satisfies an improved Ma-Trudinger-Wang condition and the Jacobian of the exponential map is positive. As a consequence, we imply the smoothness of the optimal transport map by the continuity method.

MSC:

49Q22 Optimal transportation
35R01 PDEs on manifolds
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
49N60 Regularity of solutions in optimal control

Citations:

Zbl 1310.53036
Full Text: DOI

References:

[1] Brenier, Yann, Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., 44, 4, 375-417 (1991) · Zbl 0738.46011 · doi:10.1002/cpa.3160440402
[2] do Carmo, Manfredo, Riemannian Geometry (1992), Birkhäuser · Zbl 0752.53001
[3] Chavel, Isaac, Eigenvalues in Riemannian Geometry, 115 (1984), Academic Press Inc. · Zbl 0551.53001
[4] Cheeger, Jeff; Ebin, David G., Comparison Theorems in Riemannian Geometry, 9 (1975), North-Holland · Zbl 0309.53035
[5] Cordero-Erausquin, Dario, Sur le transport de mesures périodiques, C. R. Math. Acad. Sci. Paris, 329, 3, 199-202 (1999) · Zbl 0942.28015 · doi:10.1016/S0764-4442(00)88593-6
[6] Delanoë, Philippe
[7] Delanoë, Philippe, On the smoothness of the potential function in Riemannian optimal transport, Commun. Anal. Geom., 23, 1, 11-89 (2015) · Zbl 1310.53036 · doi:10.4310/CAG.2015.v23.n1.a2
[8] Delanoë, Philippe; Ge, Yuxin, Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds, J. Reine Angew. Math., 646, 65-115 (2010) · Zbl 1200.58025
[9] Delanoë, Philippe; Ge, Yuxin, Locally nearly spherical surfaces are almost-positively curved, Methods Appl. Anal., 18, 269-302 (2011) · Zbl 1295.53027
[10] Delanoë, Philippe; Rouvière, François, Positively curved riemannian locally symmetric spaces are positively squared distance curved, Can. J. Math., 65, 4, 757-767 (2013) · Zbl 1312.53073 · doi:10.4153/CJM-2012-015-1
[11] Figalli, Alessio, Existence, uniqueness, and regularity of optimal transport maps, SIAM J. Math. Anal., 39, 1, 126-137 (2007) · Zbl 1132.28322 · doi:10.1137/060665555
[12] Figalli, Alessio; Kim, Young-Heon; McCann, Robert J., Hölder continuity and injectivity of optimal transport maps, Arch. Ration. Mech. Anal., 209, 747-795 (2013) · Zbl 1281.49037 · doi:10.1007/s00205-013-0629-5
[13] Figalli, Alessio; Kim, Young-Heon; McCann, Robert J., Regularity of optimal transport maps on multiple products of spheres, J. Eur. Math. Soc., 15, 4, 1131-1166 (2013) · Zbl 1268.49053 · doi:10.4171/JEMS/388
[14] Figalli, Alessio; Rifford, Ludovic, Continuity of optimal transport maps on small deformations of \(\mathbb{S}^2\), Commun. Pure Appl. Math., 62, 12, 1670-1706 (2009) · Zbl 1175.49040 · doi:10.1002/cpa.20293
[15] Figalli, Alessio; Rifford, Ludovic; Villani, Cédric, On the Ma-Trudinger-Wang curvature on surfaces, Calc. Var. Partial Differ. Equ., 39, 3-4, 307-332 (2010) · Zbl 1203.53034 · doi:10.1007/s00526-010-0311-9
[16] Figalli, Alessio; Rifford, Ludovic; Villani, Cédric, Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds, Tôhoku Math. J., 63, 855-876 (2011) · Zbl 1262.58013
[17] Figalli, Alessio; Rifford, Ludovic; Villani, Cédric, Nearly round spheres look convex, Am. J. Math., 134, 1, 109-139 (2012) · Zbl 1241.53031 · doi:10.1353/ajm.2012.0000
[18] Gallot, Sylvestre; Hulin, Dominique; Lafontaine, Jacques, Riemannian Geometry (1990), Springer · Zbl 0716.53001
[19] Gilbarg, David; Trudinger, Neil S., Elliptic Partial Differential Equations of Second Order, 224 (1977), Springer · Zbl 0361.35003
[20] Kantorovich, Leonid V., On a problem of Monge, Usp. Mat. Nauk, 3, 2, 225-226 (2006) · Zbl 1080.49508
[21] Kim, Young-Heon, Counterexamples to continuity of optimal transportation on positively curved Riemannian manifolds, Int. Math. Res. Not., 2008, 15 p. pp. (2008) · Zbl 1160.49047
[22] Kim, Young-Heon; McCann, Robert J., Continuity, curvature, and the general covariance of optimal transportation, J. Eur. Math. Soc., 12, 4, 1009-1040 (2010) · Zbl 1191.49046
[23] Kim, Young-Heon; McCann, Robert J., Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular), J. Reine Angew. Math., 664, 1-27 (2012) · Zbl 1239.53049
[24] Lee, Paul W. Y., New computable necessary conditions for the regularity theory of optimal transportation, SIAM J. Math. Anal., 42, 6, 3054-3075 (2010) · Zbl 1234.49039
[25] Lee, Paul W. Y.; Li, Jiayong, New examples satisfying Ma-Trudinger-Wang conditions, SIAM J. Math. Anal., 44, 1, 61-73 (2012) · Zbl 1243.58007
[26] Liu, Jiakun, Hölder regularity of optimal mappings in optimal transportation, Calc. Var. Partial Differ. Equ., 34, 4, 435-451 (2009) · Zbl 1166.35331
[27] Liu, Jiakun; Trudinger, Neil S.; Wang, Xu-Jia, Interior \({C}^{2,\alpha }\) regularity for potential functions in optimal transportation, Commun. Partial Differ. Equations, 35, 1, 165-184 (2010) · Zbl 1189.35142
[28] Loeper, Grégoire, On the regularity of solutions of optimal transportation problems, Acta Math., 202, 2, 241-283 (2009) · Zbl 1219.49038 · doi:10.1007/s11511-009-0037-8
[29] Loeper, Grégoire, Regularity of optimal maps on the sphere: The quadratic cost and the reflector antenna, Arch. Ration. Mech. Anal., 199, 1, 269-289 (2011) · Zbl 1231.35280 · doi:10.1007/s00205-010-0330-x
[30] Loeper, Grégoire; Villani, Cédric, Regularity of optimal transport in curved geometry: the nonfocal case, Duke Math. J., 151, 3, 431-485 (2010) · Zbl 1192.53041
[31] Ma, Xi-Nan; Trudinger, Neil S.; Wang, Xu-Jia, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech. Anal., 177, 2, 151-183 (2005) · Zbl 1072.49035
[32] McCann, Robert J., Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., 11, 3, 589-608 (2001) · Zbl 1011.58009 · doi:10.1007/PL00001679
[33] Meyer, W., Toponogov’s Theorem and Applications (1989), Trieste
[34] Monge, G., Mémoire sur la théorie des déblais et remblais (1781), Mémoires de l’Académie Royale des Sciences de Paris
[35] Trudinger, Neil S.; Wang, Xu-Jia, On the second boundary value problem for Monge-Ampère type equations and optimal transportation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 8, 1, 143-174 (2009) · Zbl 1182.35134
[36] Villani, Cédric, Optimal transport, old and new, 338 (2009), Springer · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.