×

Robust multiuser MIMO scheduling algorithms with imperfect CSI. (English) Zbl 1245.68040

Summary: Robust multiuser multiple-input-multiple-output (MIMO) scheduling algorithms are proposed in this paper. With imperfect channel state information (CSI), traditional scheduling algorithms for the multiuser MIMO system based on the zero forcing precoding scheme will lose some performance due to the multi-user interference (MUI). In order to improve the system average throughput, we study the robust multiuser MIMO scheduling problem with imperfect CSI. From the average capacity formula, we derive a robust factor which can transform the robust multiuser MIMO scheduling problem into the traditional one, thus most existing nonrobust scheduling algorithms can be robust if this factor is adopted. Simulation results show that compared with the traditional algorithms, the proposed robust algorithms can improve the system average throughput significantly under the CSI error environment.

MSC:

68M20 Performance evaluation, queueing, and scheduling in the context of computer systems
94A40 Channel models (including quantum) in information and communication theory

References:

[1] Costa M. Writing on dirty paper. IEEE Trans Inf Theory, 1983, 29: 439–441 · Zbl 0504.94027 · doi:10.1109/TIT.1983.1056659
[2] Vishwanath S, Jindal N, Goldsmith A. Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels. IEEE Trans Inf Theory, 2003, 49: 2658–2668 · Zbl 1301.94095 · doi:10.1109/TIT.2003.817421
[3] Spencer Q H, Swindlehurst A L, Haardt M. Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Trans Signal Process, 2004, 52: 461–471 · Zbl 1369.94294 · doi:10.1109/TSP.2003.821107
[4] Shen Z, Chen R, Andrews J G, et al. Multimode transmission for multiuser MIMO systems with block diagonalization. IEEE Trans Signal Process, 2008, 56: 3294–3302 · Zbl 1390.94730 · doi:10.1109/TSP.2008.920453
[5] Shen Z, Chen R, Andrews J R, et al. Low complexity user selection algorithms for multiuser mimo systems with block diagonalization. IEEE Trans Signal Process, 2006, 54: 3658–3663 · Zbl 1374.94761 · doi:10.1109/TSP.2006.879269
[6] Zhang X J, Lee J W. Low complexity MIMO scheduling with channel decomposition using capacity upperbound. IEEE Trans Commun, 2008, 56: 871–876 · doi:10.1109/TCOMM.2008.060384
[7] Sigdel S, Krzymien W A. Simplified fair scheduling and antenna selection algorithms for multiuser MIMO orthogonal space-division multiplexing downlink. IEEE Trans Veh Technol, 2009, 58: 1329–1343 · doi:10.1109/TVT.2008.925002
[8] Hei Y Q, Li X H, Yi K C, et al. Novel scheduling strategy for downlink multiuser MIMO system: Particle swarm optimization. Sci China Inf Sci, 2009, 52: 2279–2289 · Zbl 1181.94084 · doi:10.1007/s11432-009-0212-8
[9] Xia X, Wu G, Liu J, et al. Leakage-based user scheduling in MU-MIMO broadcast channel. Sci China Inf Sci, 2009, 52: 2259–2268 · Zbl 1181.94087 · doi:10.1007/s11432-009-0214-6
[10] Chang Y Y, Araki K. Robust design for multiuser block diagonalization MIMO downlink system with CSI feedback delay. In: IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications 2009, Tokyo, Japan, 2009. 3089–3093
[11] Ubaidulla P, Chockalingam A. Robust joint precoder/receive filter designs for multiuser MIMO downlink. In: IEEE 10th Workshop on Signal Processing Advances in Wireless Communications 2009. Perugia, Italy, 2009. 136–140 · Zbl 1184.94218
[12] Wang L, Yang K, Hu H Y, et al. Robust joint linear transceiver design for MU-MIMO with imperfect CSI. In: Global Mobile Congress 2010. Shanghai, China, 2010. 1–6
[13] Hassibi B, Hochwald B M. How much training is needed in multiple-antenna wireless links? IEEE Trans Inf Theory, 2003, 49: 951–963 · Zbl 1063.94506 · doi:10.1109/TIT.2003.809594
[14] Jakes W C. Microwave Mobile Communication. New York: Wiley, 1974
[15] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products. New York: Academic Press, 2007 · Zbl 1208.65001
[16] Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004 · Zbl 1058.90049
[17] Horn R A. Matrix Analysis. Cambridge: Cambridge University Press, 1985 · Zbl 0576.15001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.