×

A safe semi-supervised graph convolution network. (English) Zbl 1512.68293

MSC:

68T05 Learning and adaptive systems in artificial intelligence

Software:

FastGCN; Cluster-GCN

References:

[1] L. Luo, K. Liu, D. Peng, Y. Ying, X. Zhang, A motif-based graph neural network to reciprocal recommendation for online dating, in International Conference on Neural Information Processing, Springer, (2020), 102-114. https://doi.org/10.1007/978-3-030-63833-7_9
[2] A. Fout, J. Byrd, B. Shariat, A. Ben-Hur, Protein interface prediction using graph convolutional networks, in Advances in Neural Information Processing Systems 30 (NIPS 2017), 30 (2017), 1-10.
[3] Y, A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network, BMC Med. Inf. Decis. Making, 20, 1-9 (2020) · doi:10.1186/s12911-020-1052-0
[4] X, Graph neural networks and their current applications in bioinformatics, Front. Genet., 12, 690049 (2021) · doi:10.3389/fgene.2021.690049
[5] J, Graph neural networks: A review of methods and applications, AI Open, 1, 57-81 (2020) · doi:10.1016/j.aiopen.2021.01.001
[6] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, preprint, arXiv: 1312.6203.
[7] M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-structured data, preprint, arXiv: 1506.05163.
[8] J. Atwood, D. Towsley, Diffusion-convolutional neural networks, in Advances in Neural Information Processing Systems 29 (NIPS 2016), 29 (2016), 1-9.
[9] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, preprint, arXiv: 1609.02907.
[10] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs, in Advances in Neural Information Processing Systems 30 (NIPS 2017), 30 (2017), 1-11.
[11] J. Chen, T. Ma, C. Xiao, Fastgcn: fast learning with graph convolutional networks via importance sampling, preprint, arXiv: 1801.10247.
[12] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, K. Weinberger, Simplifying graph convolutional networks, in International Conference on Machine Learning, (2019), 6861-6871.
[13] J. Du, S. Zhang, G. Wu, J. Moura, S. Kar, Topology adaptive graph convolutional networks, preprint, arXiv: 1710.10370.
[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, preprint, arXiv: 1710.10903.
[15] D. Kim, A. Oh, How to find your friendly neighborhood: Graph attention design with self-supervision, preprint, arXiv: 2204.04879.
[16] L, Few-shot common-object reasoning using common-centric localization network, IEEE Trans. Image Process., 30, 4253-4262 (2021) · doi:10.1109/TIP.2021.3070733
[17] W. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, C. J. Hsieh, Cluster-gcn: An efficient algorithm for training deep and large graph convolutional networks, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, (2019), 257-266. https://doi.org/10.1145/3292500.3330925
[18] H. Pei, B. Wei, K. C. C. Chang, Y. Lei, B. Yang, Geom-gcn: Geometric graph convolutional networks, preprint, arXiv: 2002.05287.
[19] B, Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network, Transp. Res. Part C Emerging Technol., 114, 189-204 (2020) · doi:10.1016/j.trc.2020.02.013
[20] O, Semi-supervised learning [book reviews], IEEE Trans. Neural Networks, 20, 542 (2009) · doi:10.1109/TNN.2009.2015974
[21] A. Singh, R. Nowak, J. Zhu, Unlabeled data: Now it helps, now it doesn’t, in Advances in Neural Information Processing Systems 21 (NIPS 2008), 21 (2008), 1-8.
[22] N, Learning from labeled and unlabeled data: An empirical study across techniques and domains, J. Artif. Intell. Res., 23, 331-366 (2005) · Zbl 1080.68613 · doi:10.1613/jair.1509
[23] H. Gan, N. Sang, X. Chen, Semi-supervised kernel minimum squared error based on manifold structure, in International Symposium on Neural Networks, Springer, (2013), 265-272. https://doi.org/10.1007/978-3-642-39065-4_33
[24] Y. Wu, Y. Lin, X. Dong, Y. Yan, W. Ouyang, Y. Yang, Exploit the unknown gradually: One-shot video-based person re-identification by stepwise learning, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 5177-5186.
[25] Y, Progressive learning for person re-identification with one example, IEEE Trans. Image Process., 28, 2872-2881 (2019) · doi:10.1109/TIP.2019.2891895
[26] Z. Hu, Z. Yang, X. Hu, R. Nevatia, Simple: similar pseudo label exploitation for semi-supervised classification, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021), 15099-15108.
[27] Q. Li, Z. Han, X. M. Wu, Deeper insights into graph convolutional networks for semi-supervised learning, in Thirty-Second AAAI conference on artificial intelligence, 2018.
[28] K. Sun, Z. Lin, Z. Zhu, Multi-stage self-supervised learning for graph convolutional networks on graphs with few labeled nodes, in Proceedings of the AAAI Conference on Artificial Intelligence, 34 (2020), 5892-5899. https://doi.org/10.1609/aaai.v34i04.6048
[29] Z. Zhou, S. Zhang, Z. Huang, Dynamic self-training framework for graph convolutional networks, in International Conference on Learning Representations, 2019.
[30] D, Rank-based self-training for graph convolutional networks, Inf. Process. Manage., 58, 102443 (2021) · doi:10.1016/j.ipm.2020.102443
[31] H, Probability of error of some adaptive pattern-recognition machines, IEEE Trans. Inf. Theory, 11, 363-371 (1965) · Zbl 0133.12704 · doi:10.1109/TIT.1965.1053799
[32] Y, Multiple knowledge representation for big data artificial intelligence: framework, applications, and case studies, Front. Inf. Technol. Electron. Eng., 22, 1551-1558 (2021) · doi:10.1631/FITEE.2100463
[33] P, Collective classification in network data, AI Mag., 29, 93 (2008) · doi:10.1609/aimag.v29i3.2157
[34] J. Klicpera, A. Bojchevski, S. Günnemann, Predict then propagate: Graph neural networks meet personalized pagerank, preprint, arXiv: 1810.05997.
[35] K. K. Thekumparampil, C. Wang, S. Oh, L. J. Li, Attention-based graph neural network for semi-supervised learning, preprint, arXiv: 1803.03735.
[36] C, Support-vector networks, Mach. Learn., 20, 273-297 (1995) · Zbl 0831.68098 · doi:10.1007/BF00994018
[37] D, Learning representations by back-propagating errors, Nature, 323, 533-536 (1986) · Zbl 1369.68284 · doi:10.1038/323533a0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.