×

Unstable evolution of pointwise trajectory solutions to chaotic maps. (English) Zbl 1055.37538

Summary: Simple chaotic maps are used to illustrate the inherent instability of trajectory solutions to the Frobenius-Perron equation. This is demonstrated by the difference in the behavior of \(\delta\)-function solutions and of extended densities. Extended densities evolve asymptotically and irreversibly into invariant measures on stationary attractors. Pointwise trajectories chaotically roam over these attractors forever. Periodic Gaussian distributions on the unit interval are used to provide insight. Viewing evolving densities as ensembles of unstable pointwise trajectories gives densities a stochastic interpretation.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
28D10 One-parameter continuous families of measure-preserving transformations
39B12 Iteration theory, iterative and composite equations
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
37A10 Dynamical systems involving one-parameter continuous families of measure-preserving transformations

References:

[1] DOI: 10.1103/PhysRevLett.64.1196 · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[2] DOI: 10.1103/PhysRevLett.65.3211 · doi:10.1103/PhysRevLett.65.3211
[3] DOI: 10.1103/PhysRevLett.68.1259 · doi:10.1103/PhysRevLett.68.1259
[4] DOI: 10.1103/PhysRevA.46.7401 · doi:10.1103/PhysRevA.46.7401
[5] DOI: 10.1103/PhysRevE.50.1781 · doi:10.1103/PhysRevE.50.1781
[6] DOI: 10.1063/1.165950 · doi:10.1063/1.165950
[7] DOI: 10.1063/1.165950 · doi:10.1063/1.165950
[8] DOI: 10.1063/1.165950 · doi:10.1063/1.165950
[9] DOI: 10.1088/0951-7715/3/2/005 · Zbl 0702.58064 · doi:10.1088/0951-7715/3/2/005
[10] DOI: 10.1088/0951-7715/3/2/005 · Zbl 0702.58064 · doi:10.1088/0951-7715/3/2/005
[11] DOI: 10.1088/0951-7715/3/2/005 · Zbl 0702.58064 · doi:10.1088/0951-7715/3/2/005
[12] DOI: 10.1088/0951-7715/3/2/005 · Zbl 0702.58064 · doi:10.1088/0951-7715/3/2/005
[13] DOI: 10.1103/PhysRevLett.64.249 · Zbl 1050.82539 · doi:10.1103/PhysRevLett.64.249
[14] DOI: 10.1103/PhysRevA.41.2969 · doi:10.1103/PhysRevA.41.2969
[15] DOI: 10.1103/PhysRevA.43.1709 · doi:10.1103/PhysRevA.43.1709
[16] Fox R. F., Chaos 3 pp 313– (1993) · Zbl 1055.37588 · doi:10.1063/1.165940
[17] Fox R. F., Phys. Rev. E 49 pp 3683– (1994) · doi:10.1103/PhysRevE.49.3683
[18] Fox R. F., Phys. Rev. E 50 pp 2553– (1994) · doi:10.1103/PhysRevE.50.2553
[19] DOI: 10.1103/PhysRev.40.749 · Zbl 0004.38201 · doi:10.1103/PhysRev.40.749
[20] Husimi K., Proc. Phys. Math. Soc. Jpn. 22 pp 264– (1940)
[21] DOI: 10.1016/0375-9601(81)90881-1 · doi:10.1016/0375-9601(81)90881-1
[22] DOI: 10.1103/PhysRevA.34.7 · doi:10.1103/PhysRevA.34.7
[23] Nakamura K., Phys. Rev. B 39 pp 12– (1989)
[24] Fox R. F., Phys. Rev. A 41 pp 2952– (1990) · doi:10.1103/PhysRevA.41.2952
[25] Gaspard P., J. Phys. A: Math. Gen. 25 pp L483– (1992) · Zbl 0762.58013 · doi:10.1088/0305-4470/25/8/017
[26] Hutchinson J., Ind. Univ. J. Math. 30 pp 713– (1981) · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[27] DOI: 10.1007/BF01010528 · Zbl 0624.58037 · doi:10.1007/BF01010528
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.