×

Two Cholesky-log-GARCH models for multivariate volatilities. (English) Zbl 07258988

Summary: Parsimonious estimation of high-dimensional covariance matrices is of fundamental importance in multivariate statistics. Typical examples occur in finance, where the instantaneous dependence among several asset returns should be taken into account. Multivariate GARCH processes have been established as a standard approach for modelling such data. However, the majority of GARCH-type models are either based on strong assumptions that may not be realistic or require restrictions that are often too hard to be satisfied in practice. We consider two alternative decompositions of time-varying covariance matrices \(\mathbf{\Sigma}_t\). The first is based on the modified Cholesky decomposition of the covariance matrices and second relies on the hyperspherical parametrization of the standard Cholesky factor of their correlation matrices \(\mathbf{R}_t\). Then, we combine each Cholesky factor with the log-GARCH models for the corresponding time-varying volatilities and use a quasi maximum likelihood approach to estimate the parameters. Using log-GARCH models is quite natural for achieving the positive definiteness of \(\mathbf{\Sigma}_t\) and this is a novelty of this work. Application of the proposed methodologies to two real financial datasets reveals their usefulness in terms of parsimony, ease of implementation and stresses the choice of the appropriate models using familiar data-driven processes such as various forms of the exploratory data analysis and regression.

MSC:

62-XX Statistics
Full Text: DOI

References:

[1] Alexander, C (2001) Market models: A guide to financial data analysis. New York: John Wiley.
[2] Bollerslev, T (1986) Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307-27. · Zbl 0616.62119 · doi:10.1016/0304-4076(86)90063-1
[3] Bollerslev, T (1990) Modelling the coherence in short-run nominal exchange rates: a multivariate generalized arch approach. Review of Economics and Statistics, 72, 498-505. · doi:10.2307/2109358
[4] Bollerslev, T, Engle, R, Wooldridge, J (1988) A capital asset pricing model with time-varying covariances. The Journal of Political Economy, 96, 116-31. · doi:10.1086/261527
[5] Chang, C, Tsay, R (2010) Estimation of covariance matrix via the sparse Cholesky factor with lasso. Journal of Statistical Planning and Inference, 140, 3858-73. · Zbl 1233.62118 · doi:10.1016/j.jspi.2010.04.048
[6] Creal, D, Koopman, S, Lucas, A (2011) A dynamic multivariate heavy-tailed model for time-varying volatilities and correlations. Journal of Business & Economic Statistics, 29, 552-63. · doi:10.1198/jbes.2011.10070
[7] Dellaportas, P, Pourahmadi, M (2004) Large time-varying covariance matrices with applications to finance. Technical Report, Athens University of Economics, Department of Statistics. · Zbl 1252.91080
[8] Dellaportas, P, Pourahmadi, M (2012) Cholesky-GARCH models with applications to finance. Statistics and Computing, 22, 849-55. · Zbl 1252.91080 · doi:10.1007/s11222-011-9251-2
[9] Engle, R (1982) Autoregressive conditional heterskedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987-1008. · Zbl 0491.62099 · doi:10.2307/1912773
[10] Engle, R (2002) Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business amd Economic Statistics, 20, 339-50. · doi:10.1198/073500102288618487
[11] Engle, R, Kroner, K (1995) Multivariate simultaneous generalized ARCH. Econometric Theory, 11, 122-50. · doi:10.1017/S0266466600009063
[12] Engle, R, Ng, V, Rothschild, M (1990) Asset pricing with a factor ARCH covariance structure. Journal of Econometrics, 45, 213-38. · doi:10.1016/0304-4076(90)90099-F
[13] Francq, C, Wintenberger, O, Zakoian, J (2013) GARCH models without positivity constraints: exponential or log GARCH? Journal of Econometrics, 177, 34-46. · Zbl 1285.62105 · doi:10.1016/j.jeconom.2013.05.004
[14] Francq, C, Zakoian, J (2010) GARCH models: structure, statistical inference and financial applications. New York: John Wiley. · Zbl 1431.62004 · doi:10.1002/9780470670057
[15] Geweke, J (1986) Modelling the persistence of conditional variances: a comment. Econometric Review, 5, 57-61. · doi:10.1080/07474938608800097
[16] Leng, C, Zhang, W, Pan, J (2010) Semiparametric mean-covariance regression analysis for longitudinal data. Journal of the American Statistical Association, 105, 181-93. · Zbl 1397.62130 · doi:10.1198/jasa.2009.tm08485
[17] Lin, D, Ying, Z (2001) Semiparametric and nonparametric regression analysis of longitudinal data (with discussions). Journal of the American Statistical Association, 96, 103-26. · Zbl 1015.62038 · doi:10.1198/016214501750333018
[18] Lopes, H, McCullogh, R, Tsay, R (2012) Cholesky stochastic volatility models for high-dimensional time series. Technical Report, University of Chicago, Booth Business School.
[19] Pan, J, MacKenzie, G (2003) On modelling mean-covariance structures in longitudinal studies. Biometrika, 90, 239-44. · Zbl 1039.62068 · doi:10.1093/biomet/90.1.239
[20] Pan, J, Ye, H, Li, R (2009) Nonparametric regression of covariance structures in longitudinal studies. MIMS Preprint.
[21] Pourahmadi, M (1999) Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterization. Biometrika, 86, 677-90. · Zbl 0949.62066 · doi:10.1093/biomet/86.3.677
[22] Pourahmadi, M (2000) Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix. Biometrika, 87, 425-35. · Zbl 0954.62091 · doi:10.1093/biomet/87.2.425
[23] Pourahmadi, M (2011) Covariance estimation: The GLM and regularization perspectives. Statistical Science, 26, 369-87. · Zbl 1246.62139 · doi:10.1214/11-STS358
[24] Rapisarda, F, Brigo, D, Mercurio, F (2007) Parameterizing correlations: a geometric interpretation. IMA Journal of Management Mathematics, 18, 55-73. · Zbl 1123.62041 · doi:10.1093/imaman/dpl010
[25] Rebonato, R, Jäckel, P (2000) The most general methodology for creating a valid correlation matrix for risk management and option pricing purposes. Journal of Risk, 2, 17-27. · doi:10.21314/JOR.2000.023
[26] Silvennoinen, A, Teräsvirta, T (2009) Multivariate garch models. In Mikosch, T Kreiß, J-P Davis, RA Andersen, TG (Eds), Handbook of financial time series. Heidelberg, Berlin: Springer, pp. 201-29. · Zbl 1178.62103 · doi:10.1007/978-3-540-71297-8_9
[27] Tibshirani, R (1996) Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 58, 267-88. · Zbl 0850.62538
[28] Tsay, R (2010) Analysis of financial time series (Third Edition). New York: John Wiley. · Zbl 1209.91004 · doi:10.1002/9780470644560
[29] Tse, Y, Tsui, A (2002) A multivariate generalized autoregressive conditional heteroskedasticity model with time-varying correlations. Journal of Business and Economic Statistics, 20, 351-62. · doi:10.1198/073500102288618496
[30] Vrontos, I, Dellaportas, P, Politis, D (2003) A full-factor multivariate GARCH model. Econometrics Journal, 52, 2632-49. · Zbl 1065.91553
[31] Zhang, W, Leng, C, Tang, CY (2014) A joint modelling approach for longitudinal studies. Journal of the Royal Statistical Society: Series B (Statistical Methodology) (to appear). · Zbl 1414.62388
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.