×

A multiscale approach and a hybrid FE-BE algorithm for heterogeneous scattering of Maxwell’s equations. (English) Zbl 1362.78009

Summary: In this paper we discuss the multiscale approach for the scattering problem of Maxwell’s equations in a heterogeneous material with a periodic microstructure. The new contributions in this paper are the determination of the multiscale correctors and the strong convergence in the norm of the space \(\mathbf{H}(\mathbf{curl}; \Omega)\) with an explicit rate for the approximate solutions (see Theorem 2.4). Consequently, we present a multiscale hybrid finite element method-boundary element method (FE-BE). The numerical examples are carried out to validate the theoretical results of this paper.

MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35Q60 PDEs in connection with optics and electromagnetic theory
65F10 Iterative numerical methods for linear systems
78A25 Electromagnetic theory (general)
78A40 Waves and radiation in optics and electromagnetic theory
78A45 Diffraction, scattering
78A48 Composite media; random media in optics and electromagnetic theory
78M40 Homogenization in optics and electromagnetic theory
78M15 Boundary element methods applied to problems in optics and electromagnetic theory
Full Text: DOI

References:

[1] Wellander, N.; Kristensson, G., Homogenization of the Maxwell equations at fixed frequency, SIAM J. Appl. Math., 64, 170-195 (2003) · Zbl 1042.35081
[2] Cessenat, M., Mathematical Methods in Electromagnetism: Linear Theory and Applications (1996), World Scientific: World Scientific Singapore · Zbl 0917.65099
[3] Chew, W. C., Waves and Fields in Inhomogeneous Media (1995), IEEE Press: IEEE Press New York
[4] Joannopoulos, J. D.; Meade, R. D.; Winn, J. N., Photonic Crystals: Molding the Flow of Light (1995), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1035.78500
[5] Vouvakis, M. N.; Lee, S.-C.; Zhao, K.; Lee, J.-F., A symmetric FEM-IE formulation with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems, IEEE Trans. Antennas and Propagation, 52, 11, 3060-3070 (2004) · Zbl 1368.78066
[6] Bensoussan, A.; Lions, J. L.; Papanicolaou, G., Asymptotic Analysis for Periodic Structures (1978), North-Holland: North-Holland Amsterdam · Zbl 0411.60078
[7] Sanchez-Palencia, E., Non-Homogeneous Media and Vibration Theory (1980), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 0432.70002
[8] Jikov, V. V.; Kozlov, S. M.; Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0801.35001
[9] Wellander, N., Homogenization of the Maxwell equations. Case I. Linear theory, Appl. Math., 46, 29-51 (2001) · Zbl 1058.78004
[10] Bossavit, A.; Griso, G.; Miara, B., Modelling of periodic electromagnetic structures bianisotropic materials with memory effects, J. Math. Pures Appl., 84, 819-850 (2005) · Zbl 1078.35120
[11] Banks, H. T.; Bokil, V. A.; Cioranescu, D.; Gibson, N. L.; Griso, G.; Miara, B., Homogenization of periodically varying coefficients in electromagnetic materials, J. Sci. Comput., 28, 191-221 (2006) · Zbl 1109.78021
[12] Cioranescu, D.; Donato, P., An Introduction to Homogenization (1999), Oxford University Press: Oxford University Press New York · Zbl 0939.35001
[13] Barbatis, G.; Stratis, I. G., Homogenization of Maxwell’s equations in dissipative bianisotropic media, Math. Methods Appl. Sci., 26, 1241-1253 (2003) · Zbl 1033.78019
[14] Sjöberg, D.; Engström, C.; Kristensson, G.; Wall, D. J.N.; Wellander, N., A Floquet-Bloch decomposition of Maxwell’s equations applied to homogenization, Multiscale Model. Simul., 4, 149-171 (2005) · Zbl 1088.35071
[15] Sjöberg, D., Homogenization of dispersive material parameters for Maxwell’s equations using a singular value decomposition, Multiscale Model. Simul., 4, 760-789 (2005) · Zbl 1089.78027
[16] Cao, L. Q.; Zhang, Y.; Allegretto, W.; Lin, Y. P., Multiscale asymptotic method for Maxwell’s equations in composite materials, SIAM J. Numer. Anal., 47, 6, 4257-4289 (2010) · Zbl 1218.65126
[17] Cao, L. Q.; Cui, J. Z., Asymptotic expansions and numerical algorithms of eigenvalues and eigenfunctions of the Dirichlet problem for second order elliptic equations in perforated domains, Numer. Math., 96, 525-581 (2004) · Zbl 1049.65126
[18] Wellander, N., Homogenization of the Maxwell equations. Case II. Nonlinear conductivity, Appl. Math., 47, 255-283 (2002) · Zbl 1090.35504
[19] Cao, L. Q.; Li, K. Q.; Luo, J. L.; Wong, Y. S., A multiscale approach and a hybrid FE-FDTD algorithm for 3D time-dependent Maxwell’s equations in composite materials, Multiscale Model. Simul., 13, 4, 1446-1477 (2015) · Zbl 1336.78015
[20] Oleinik, O. A.; Shamaev, A. S.; Yosifian, G. A., Mathematical Problems in Elasticity and Homogenization (1992), North-Holland: North-Holland Amsterdam · Zbl 0768.73003
[21] Girault, V.; Raviant, P. A., Finite Element Methods for Navier-Stokes Equations (1986), Springer-Verlag: Springer-Verlag New York · Zbl 0585.65077
[22] Monk, P., Finite Element Methods for Maxwell’s Equations (2003), Clarendon Press: Clarendon Press Oxford, UK · Zbl 1024.78009
[23] Costabel, M.; Dauge, M.; Nicaise, S., Sigularities of Maxwell interface problems, M2AN Math. Model. Numer. Anal., 33, 627-649 (1999) · Zbl 0937.78003
[24] Costabel, M.; Dauge, M., Singularities of electromagnetic fields in polyhedral domains, Arch. Ration. Mech. Anal., 151, 221-276 (2000) · Zbl 0968.35113
[25] Nédélec, J. C., Mixed finite elements in \(R^3\), Numer. Math., 35, 315-341 (1980) · Zbl 0419.65069
[26] Zhang, Y.; Cao, L. Q.; Wong, Y. S., Multiscale computations for 3D time-dependent Maxwell’s equations in composite materials, SIAM J. Sci. Comput., 32, 5, 2560-2583 (2010) · Zbl 1219.78134
[27] Zhang, Y.; Cao, L. Q.; Allegretto, W.; Lin, Y. P., Multiscale numerical algorithm for 3-D Maxwell’s equations with memory effects in composite materials, Int. J. Numer. Anal. Model., Ser. B, 1, 2560-2583 (2010) · Zbl 1219.78134
[28] Buffa, A.; Hiptmair, R., Galerkin boundary element methods for electromagnetic scattering, (Ainsworth, M., Computational Methods in Wave Propagation. Computational Methods in Wave Propagation, Lecture Notes in Computational Science and Engineering (2003), Springer: Springer New York), 85-126
[30] Hiptmair, R., Symmetric coupling for eddy current problems, SIAM J. Numer. Anal., 40, 1, 41-65 (2003) · Zbl 1010.78011
[31] Wang, X.; Cao, L.-Q., The hole-filling method and the uniform multiscale computation of the elastic equations in perforated domains, Int. J. Numer. Anal. Model., 5, 612-634 (2008) · Zbl 1157.35504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.