×

A fast image encryption algorithm based on non-adjacent dynamically coupled map lattice model. (English) Zbl 1439.94067

Summary: This paper proposes a new logistic-dynamic Arnold coupled logistic map lattice model (LDACLML), where coupling coefficient is logistics map. According to the analysis of space-time behavior, Kolmogorov-Sinai entropy and information entropy, it can be found that the state of each lattice of LDACLML is more stable and more chaotic than CML or even ACLML model. When applied in image encryption, security of LDACLML is higher than CML and ACLML. Therefore, based on this model, in this paper, a new fast image encryption algorithm is proposed. In the algorithm, LDACLML is used to generate key stream of permutation and diffusion. By analyzing the performance of encryption and the ability to prevent various attacks, it can be easily determined that the algorithm has a high degree of security and the excellent efficiency; meanwhile, it also validates the excellent features of the LDACLML model from the side.

MSC:

94A60 Cryptography
94A17 Measures of information, entropy
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
Full Text: DOI

References:

[1] Kaneko, K.: Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermettency. Physica D 34(1), 1-41 (1989) · Zbl 0702.58043 · doi:10.1016/0167-2789(89)90227-3
[2] Liu, J.D.: ATCML-based spatiotemporal chaotic one-way Hash function with changeable-parameter. Acta Phys. Sin. 56(3), 1297-1304 (2007) · Zbl 1150.37338
[3] Zhang, Y.Q., Wang, X.Y.: Spatiotemporal chaos-in Arnold coupled logistic map lattice. Nonlinear Anal. Model. Control 18(4), 526-541 (2013) · Zbl 1288.82034
[4] Sinha, S.: Random coupling of chaotic maps leads to spatiotemporal synchronization. Phys. Rev. E 66(2), 016209 (2002) · doi:10.1103/PhysRevE.66.016209
[5] Zhang, Y.Q., Wang, X.Y.: Spatiotemporal chaos in mixed linear – nonlinear coupled logistic map lattice. Physica A 402, 104-118 (2014) · Zbl 1395.37028 · doi:10.1016/j.physa.2014.01.051
[6] Khellat, F., Ghaderi, A., Vasegh, N.: Li-Yorke chaos and synchronous chaos in a globally nonlocal coupled map lattice. Chaos Solitons Fractals 44(11), 934-939 (2011) · Zbl 1297.37015 · doi:10.1016/j.chaos.2011.07.015
[7] Kaneko, K.: Spatiotemporal chaos in one- and two-dimensional coupled map lattices. Physica D 37(1), 60-82 (1989) · doi:10.1016/0167-2789(89)90117-6
[8] Muruganandam, P., Francisco, G., Menezes, M.D., Ferreira, F.F.: Low dimensional behavior in three-dimensional coupled map lattices. Chaos Solitons Fractals 41(2), 997-1004 (2009) · doi:10.1016/j.chaos.2008.04.044
[9] Zhang, L., Liu, S., Yu, C.: Chaotic behaviour of nonlinear coupled reaction – diffusion system in four-dimensional space. Pramana 82(6), 995-1009 (2014) · doi:10.1007/s12043-014-0753-2
[10] Zhu, Z.L., Zhang, W., Wong, K.W., Yu, H.: A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf. Sci. 181(6), 1171-1186 (2011) · doi:10.1016/j.ins.2010.11.009
[11] Zhang, Y.Q., Wang, X.Y.: A symmetric image encryption algorithm based on mixed linear – nonlinear coupled map lattice. Inf. Sci. 273, 329-351 (2014) · doi:10.1016/j.ins.2014.02.156
[12] Brindha, M., Gounden, N.A.: A chaos based image encryption and lossless compression algorithm using hash table and Chinese Remainder Theorem. Appl. Soft Comput. 40, 379-390 (2016) · doi:10.1016/j.asoc.2015.09.055
[13] Niyat, A.Y., Moattor, M.H., Torshiz, M.N.: Color image encryption based on hybrid hyper-chaotic system and cellular automata. Opt. Lasers Eng. 90, 225-237 (2017) · doi:10.1016/j.optlaseng.2016.10.019
[14] Wang, X.Y., Zhang, Y.Q., Bao, X.M.: A novel chaotic image encryption scheme using DNA sequence operations. Opt. Lasers Eng. 73, 53-61 (2015) · doi:10.1016/j.optlaseng.2015.03.022
[15] Parvaz, R., Zarebnia, M.: A combination chaotic system and application in color image encryption. Opt. Laser Technol. 101, 30-41 (2018) · doi:10.1016/j.optlastec.2017.10.024
[16] Zhang, Y., Tang, Y.J.: A plaintext-related image encryption algorithm based on chaos. Multimed. Tools Appl. 77, 6647-6669 (2018) · doi:10.1007/s11042-017-4577-1
[17] Zhou, Y.C., Hua, Z.Y.: Image encryption using 2D logistic-adjusted-Sine map. Inf. Sci. 339, 237-253 (2016) · doi:10.1016/j.ins.2016.01.017
[18] Zhang, Q., Wei, X.: A novel couple images encryption algorithm based on DNA sequence operation and chaotic system. Optik Int. J. Light Electron Opt. 124(23), 6276-6281 (2013) · doi:10.1016/j.ijleo.2013.05.009
[19] Wu, X.J., Wang, K.S., Wang, X.Y., Kan, H.B., Kurths, J.: Color image DNA encryption using NCA map-based CML and one-time keys. Signal Process. 148, 272-287 (2018) · doi:10.1016/j.sigpro.2018.02.028
[20] Mondal, B., Kumar, P., Singh, S.: A chaotic permutation and diffusion based image encryption algorithm for secure communications. Multimed. Tools Appl. 1, 1-22 (2018)
[21] Wang, X.Y., Zhu, X.Q., Zhang, Y.Q.: An image encryption algorithm based on josephus traversing and mixed chaotic map. IEEE Access PP(99), 1 (2018)
[22] Guesmi, R., Farah, M.E.B., Kachouri, A., Samet, M.: A novel chaos-based image encryption using DNA sequence operation and Secure Hash Algorithm SHA-2. Nonlinear Dyn. 83(3), 1-14 (2015) · Zbl 1351.94049
[23] Chai, H.L.: An image encryption algorithm based on bit level Brownian motion and new chaotic systems. Multimed. Tools Appl. 76, 1159-1175 (2017) · doi:10.1007/s11042-015-3088-1
[24] Wang, X.Y., Wang, S.W., Zhang, Y.Q., Guo, K.: A novel image encryption algorithm based on chaotic shuffling method. Inf. Secur. J. Glob. Perspect. 26(1), 7-16 (2017) · doi:10.1080/19393555.2016.1272725
[25] Khan, J.S., Khan, M.A., Ahmad, J., Hwang, S.O., Ahmed, W.: An improved image encryption scheme based on a non-linear chaotic algorithm and substitution boxes. Informatica 28(4), 629-64 (2017) · doi:10.15388/Informatica.2017.149
[26] Rukhin, A., Soto, J., Nechvatal, J., Miles, S., et al.: A statistical test suite for random and pseudorandom number generators cryptographics applications. Appl. Phys. Lett. 22(7), 1645-1790 (2001)
[27] Chai, H.L., Gan, Z.H., Chen, Y.R., Zhang, Y.S.: A visually secure image encryption scheme based on compressive sensing. Signal Process. 134, 35-51 (2017) · doi:10.1016/j.sigpro.2016.11.016
[28] Ismail, S.M., Said, L.A., Radwan, A.G., Madian, A.H.: Generalized double-humped logistic map-based medical image encryption. J. Adv. Res. 10, 85-98 (2018) · doi:10.1016/j.jare.2018.01.009
[29] Kalpana, J., Murali, P.: An improved color image encryption based on multiple DNA sequence operations with DNA synthetic image and chaos. Optik 126(24), 5703-5709 (2015) · doi:10.1016/j.ijleo.2015.09.091
[30] Wu, X.J., Kan, H.B., Kurths, J.: A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps. Appl. Soft Comput. 37, 24-39 (2015) · doi:10.1016/j.asoc.2015.08.008
[31] Kumar, M., Iqbal, A., Kumar, P.: A new RGB image encryption algorithm based on DNA encoding and elliptic curve Diffie-Hellman cryptography. Signal Process 125, 187-202 (2016) · doi:10.1016/j.sigpro.2016.01.017
[32] Wang, X.Y., Zhang, H.L., Bao, X.M.: Color image encryption scheme using CML and DNA sequence operations. Biosystems 144, 18-26 (2016) · doi:10.1016/j.biosystems.2016.03.011
[33] Telem, A.N., Segning, C.M., Kenne, G., Fotsin, H.B.: A simple and robust gray image encryption scheme using chaotic logistic map and artificial neural network. Adv. Multimed. 1, 19 (2014)
[34] Wu, Y., Zhou, Y.C., Saveriades, G., Agaian, S., et al.: Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 222, 323-342 (2013) · Zbl 1293.94019 · doi:10.1016/j.ins.2012.07.049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.