×

Optimization of stamping process parameters based on an improved particle swarm optimization-genetic algorithm and sparse auto-encoder-back-propagation neural network model. (English) Zbl 1536.90251

Summary: Stamping is a very important manufacturing process. To optimize the process parameters, a hybrid surrogate model based on the back-propagation neural network and sparse auto-encoder is proposed and compared with classical surrogate models to verify its reliability. Furthermore, the hybrid improved particle swarm optimization-genetic algorithm, based on chaos theory, is proposed and compared with other algorithms. A double-C part is used as an engineering example to verify the proposed method. The Latin hypercube sampling method is used for sampling and the response value is obtained by AutoForm simulation software. On this basis, the hybrid surrogate model is used to establish the mapping relationship between the forming quality of the double-C part and the stamping process parameters. The optimal stamping process parameters are obtained through the improved hybrid algorithm. The results demonstrate that the wrinkling of the optimized double-C part is significantly reduced and the forming quality is improved.

MSC:

90C59 Approximation methods and heuristics in mathematical programming
65K05 Numerical mathematical programming methods

Software:

MVF
Full Text: DOI

References:

[1] Adorio, E. P., and Diliman, U. P.. 2005. “MVF-Multivariate Test Functions Library in C for Unconstrained Global Optimization.” http://www.geocities.ws/eadorio/mvf.pdf.
[2] Azaouzi, M., Naceur, H., Delameziere, A., Batoz, J. L., and Belouettar, S.. 2008. “A Heuristic Optimization Algorithm for the Blank Shape Design of High Precision Metallic Parts Obtained by a Particular Stamping Process.” Finite Elements in Analysis and Design44 (14): 842-850. doi:.
[3] Browne, M. T., and Hillery, M. T.. 2003. “Optimising the Variables When Deep-Drawing C.R.1 Cups.” Journal of Materials Processing Technology136 (1-3): 64-71. doi:.
[4] Chen, J. C., Chen, Y. Y., Chen, T. L., and Chen, Y. C.. 2022. “An Adaptive Genetic Algorithm-Based and AND/OR Graph Approach for the Disassembly Line Balancing Problem.” Engineering Optimization54 (9): 1583-1599. doi:. · Zbl 1523.90147
[5] Chen, H. X., Fang, L., Fan, D. L., Huang, W. J., Huang, J. M., Cao, C. H., Yang, L., He, Y. B., and Zeng, L.. 2019. “Particle Swarm Optimization Algorithm with Mutation Operator for Particle Filter Noise Reduction in Mechanical Fault Diagnosis.” International Journal of Pattern Recognition and Artificial Intelligence34 (10): 2058012. doi:.
[6] Chengzhi, S., Guanlong, C., and Zhongqin, L.. 2005. “Determining the Optimum Variable Blank-Holder Forces Using Adaptive Response Surface Methodology (ARSM).” The International Journal of Advanced Manufacturing Technology26 (1): 23-29. doi:.
[7] Chokshi, P., Dashwood, R., and Hughes, D. J.. 2017. “Artificial Neural Network (ANN) Based Microstructural Prediction Model for 22MnB5 Boron Steel During Tailored Hot Stamping.” Computers & Structures190: 162-172. doi:.
[8] Demir, F. B., Tuncer, T., and Kocamaz, A. F.. 2020. “A Chaotic Optimization Method Based on Logistic-Sine Map for Numerical Function Optimization.” Neural Computing and Applications32 (17): 14227-14239. doi:.
[9] Gong, D. W., Hao, G. S., Zhou, Y., and Sun, X. Y.. 2007. “Interactive Genetic Algorithms with Multi-population Adaptive Hierarchy and Their Application in Fashion Design.” Applied Mathematics and Computation185 (2): 1098-1108. doi:. · Zbl 1112.65051
[10] Huang, M. D., Wang, B. Y., and Zhou, J.. 2015. “Hot Stamping Parameters Optimization of Boron Steel Using a Response Surface Methodology Based on Central Composite Design.” Journal of Iron and Steel Research22 (06): 519-526. doi:.
[11] Jakumeit, J., Herdy, M., and Nitsche, M.. 2005. “Parameter Optimization of the Sheet Metal Forming Process Using an Iterative Parallel Kriging Algorithm.” Structural and Multidisciplinary Optimization29 (6): 498-507. doi:.
[12] Jiao, B., Lian, Z. G., and Gu, X. S.. 2008. “A Dynamic Inertia Weight Particle Swarm Optimization Algorithm.” Chaos, Solitons & Fractals37 (3): 698-705. doi:. · Zbl 1146.90533
[13] Kubli, W., and Reissner, J.. 1995. “Optimization of Sheet-Metal Forming Processes Using the Special-Purpose Program Autoform.” Journal of Materials Processing Technology50 (1-4): 292-305. doi:.
[14] Lan, F. C., Chen, J. Q., Yu, X., and Lin, J. G.. 2004. “Springback Simulation and Analysis in U-Typed Sheet Metal Forming Processes.” Journal of Plasticity Engineering11 (5): 78-84.
[15] Lei, C. Y., Mao, J. Z., Zhang, X. M., and Wang, L.. 2021. “Crack Prediction in Sheet Forming of Zirconium Alloys Used in Nuclear Fuel Assembly by Support Vector Machine Method.” Energy Reports7: 5922-5932. doi:.
[16] Liew, K. M., Tan, H., Ray, T., and Tan, M. J.. 2004. “Optimal Process Design of Sheet Metal Forming for Minimum Springback Via an Integrated Neural Network Evolutionary Algorithm.” Structural and Multidisciplinary Optimization26 (3): 284-294. doi:.
[17] Liu, W., Liu, Q., Ruan, F., Liang, Z. Y., and Qiu, H. Y.. 2007. “Springback Prediction for Sheet Metal Forming Based on GA-ANN Technology.” Journal of Materials Processing Technology187: 227-231. doi:.
[18] Liu, Y. L., Zhu, X. R., and Yang, J.. 2017. “Fault Diagnosis of PV Array Based on Optimised BP Neural Network by Improved Adaptive Genetic Algorithm.” The Journal of Engineering13: 1427-1431. doi:.
[19] Ma, G. Y., and Huang, B.. 2014. “Optimization of Process Parameters of Stamping Forming of the Automotive Lower Floor Board.” Journal of Applied Mathematics, doi:.
[20] Molga, M., and Smutnicki, C.. 2005. “Test Functions for Optimization Needs.” http://zsd.ict.pwr.wroc.pl/.
[21] Naceur, H., Guo Y, Q., Batoz J, L., and Knopf-Lenoir, C.. 2001. “Optimization of Drawbead Restraining Forces and Drawbead Design in Sheet Metal Forming Process.” International Journal of Mechanical Sciences43 (10): 2407-2434. doi:. · Zbl 0988.74532
[22] Nakamura, Y., Ohata, T., Katayama, T., and Nakamachi, E.. 1998. “Optimum Die Design for Sheet Metal Forming Process by Using Finite Element and Discretized Optimization Methods.” NUMIFORM 98: Sixth International Conference on Numerical Methods in Industrial Forming Processes, 787-792.
[23] Narayanasamy, R., and Padmanabhan, P.. 2012. “Comparison of Regression and Artificial Neural Network Model for the Prediction of Springback During air Bending Process of Interstitial Free Steel Sheet.” Journal of Intelligent Manufacturing23 (3): 357-364. doi:.
[24] Ohata, T., Nakamura, Y., Katayama, T., and Nakamachi, E.. 2003. “Development of Optimum Process Design System for Sheet Fabrication Using Response Surface Method.” Journal of Materials Processing Technology143: 667-672. doi:.
[25] Pitakaso, R., Sethanan, K., and Srijaroon, N.. 2020. “Modified Differential Evolution Algorithms for Multi-vehicle Allocation and Route Optimization for Employee Transportation.” Engineering Optimization52 (7): 1225-1243. doi:. · Zbl 1523.90047
[26] Shin, H. C., Orton, M. R., Collins, D. J., Doran, S. J., and Leach, M. O.. 2013. “Stacked Autoencoders for Unsupervised Feature Learning and Multiple Organ Detection in a Pilot Study Using 4D Patient Data.” IEEE Transactions on Pattern Analysis and Machine Intelligence35 (8): 1930-1943. doi:.
[27] Sun, G. Y., Li, G. Y., Gong, Z. H., He, G. Q., and Li, Q.. 2011. “Radial Basis Functional Model for Multi-objective Sheet Metal Forming Optimization.” Engineering Optimization43 (12): 1351-1366. doi:.
[28] Trzepiecinski, T., and Lemu, H. G.. 2020. “Improving Prediction of Springback in Sheet Metal Forming Using Multilayer Perceptron-Based Genetic Algorithm.” Materials13 (14): 3129. doi:.
[29] Tuo, R., Qian, P. Z. G., and Wu, C. F. J.. 2013. “Comment: A Brownian Motion Model for Stochastic Simulation with Tunable Precision.” Technometrics55 (1): 29-31. doi:.
[30] Van den Bergh, F., and Engelbrecht, A. P.. 2004. “A Cooperative Approach to Particle Swarm Optimization.” IEEE Transactions on Evolutionary Computation8 (3): 225-239. doi:.
[31] Wu, S. Q., Fu, Y. H., Wu, G. Q., and Xia, M. M.. 2021. “Numerical Simulation Study of Influence of Friction Coefficient of die Based on Abaqus on V-Shaped Clamp Stamping Parameters.” Advances in Mechanical Engineering13 (2), doi:.
[32] Wu, P., Wang, Y. M., and Wan, P.. 2019. “Study on Simulation of Stamping Process and Optimization of Process Parameters of Fender.” Advances in Materials Science and Engineering1: 1-9. doi:.
[33] Xie, Y. M., Guo, Y. H., Zhang, F., and Wang, D. T.. 2021. “Topology Optimization of Blank Holders Based on a Kriging-Interpolated Level-Set Method.” Engineering Optimization53 (4): 662-682. doi:.
[34] Yu, X. D., and Dong, H. B.. 2018. “Remote Sensing Image Classification Based on Dynamic Co-evolutionary Parameter Optimization of SVM.” Journal of Intelligent & Fuzzy Systems35 (1): 343-351. doi:.
[35] Zhu, H., Hu, Y. M., Zhu, W. D., and Pi, Y. J.. 2017. “Optimal Design of an Autotensioner in an Automotive Belt Drive System via a Dynamic Adaptive PSO-GA.” Journal of Mechanical Design139 (9): 093302. doi:.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.