×

Multi-scale analysis of compressible viscous and rotating fluids. (English) Zbl 1251.35069

Summary: We study a singular limit for the compressible Navier-Stokes system when the Mach and Rossby numbers are proportional to certain powers of a small parameter \({\varepsilon}\). If the Rossby number dominates the Mach number, the limit problem is represented by the 2-D incompressible Navier-Stokes system describing the horizontal motion of vertical averages of the velocity field. If they are of the same order then the limit problem turns out to be a linear, 2-D equation with a unique radially symmetric solution. The effect of the centrifugal force is taken into account.

MSC:

35Q30 Navier-Stokes equations
76U05 General theory of rotating fluids
76Nxx Compressible fluids and gas dynamics

References:

[1] Babin A., Mahalov A., Nicolaenko B.: Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Indiana Univ. Math. J. 48(3), 1133–1176 (1999) · Zbl 0932.35160
[2] Babin, A., Mahalov, A., Nicolaenko, B.: 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J. 50(Special Issue), 1–35, (2001). (Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000)) · Zbl 1013.35065
[3] Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical geophysics, Volume 32 of Oxford Lecture Series in Mathematics and its Applications. Oxford: The Clarendon Press/ Oxford University Press, 2006 · Zbl 1205.86001
[4] D’Acona, P., Racke, R.: Evolution equations in non-flat waveguides. http://arXiv.org/abs/1010.0817v1 [math.Ap], 2010
[5] Desjardins B., Grenier E.: Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455(1986), 2271–2279 (1999) · Zbl 0934.76080 · doi:10.1098/rspa.1999.0403
[6] Desjardins B., Grenier E., Lions P.-L., Masmoudi N.: Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 (1999) · Zbl 0992.35067
[7] Ebin, D.B.: Viscous fluids in a domain with frictionless boundary. In: Global Analysis - Analysis on Manifolds, H. Kurke, J. Mecke, H. Triebel, R. Thiele, eds. Teubner-Texte zur Mathematik. 57, Leipzig: Teubner, 1983, pp. 93–110
[8] Feireisl, E., Novotný, A.: Singular limits in thermodynamics of viscous fluids. Basel: Birkhauser, 2009 · Zbl 1176.35126
[9] Feireisl E., Gallagher I., Novotný A.: A singular limit for compressible rotating fluids. SIAMJ. Math. Anal. 44(1), 192–205 (2009) · Zbl 1263.76077 · doi:10.1137/100808010
[10] Feireisl E., Novotný A., Petzeltová H.: On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids. J. Math. Fluid Mech. 3, 358–392 (2001) · Zbl 0997.35043 · doi:10.1007/PL00000976
[11] Gallagher I., Saint-Raymond L.: Weak convergence results for inhomogeneous rotating fluid equations. J. d’Analyse Math. 99, 1–34 (2006) · Zbl 1132.35440 · doi:10.1007/BF02789441
[12] Klainerman S., Majda A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34, 481–524 (1981) · Zbl 0476.76068 · doi:10.1002/cpa.3160340405
[13] Klein R.: Scale-dependent models for atmospheric flows. Ann. Rev. Fluid Mech. 42, 249–274 (2010) · Zbl 1213.86002 · doi:10.1146/annurev-fluid-121108-145537
[14] Lighthill J.: On sound generated aerodynamically I. General theory. Proc. of the Royal Soc. London, A 211, 564–587 (1952) · Zbl 0049.25905 · doi:10.1098/rspa.1952.0060
[15] Lighthill J.: On sound generated aerodynamically II. General theory. Proc. of the Royal Soc. London, A 222, 1–32 (1954) · Zbl 0055.19109 · doi:10.1098/rspa.1954.0049
[16] Lions, P.-L.: Mathematical topics in fluid dynamics, Vol. 2, Compressible models. Oxford: Oxford Science Publication, 1998
[17] Lions P.-L., Masmoudi N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998) · Zbl 0909.35101
[18] Lions P.-L., Masmoudi N.: Une approche locale de la limite incompressible. C.R. Acad. Sci. Paris Sér. I Math. 329(5), 230–240 (1999) · Zbl 0937.35132 · doi:10.1016/S0764-4442(00)88611-5
[19] Masmoudi N.: Rigorous derivation of the anelastic approximation. J. Math. Pures et Appl. 88(5), 387–392 (2007) · Zbl 1157.35081
[20] Metcalfe, J. L.: Global Strichartz estimates for solutions to the wave equation exterior to a convex obstacle. Trans. Amer. Math. Soc. 356(12), 4839–4855 (electronic) (2004) · Zbl 1060.35026
[21] Smith H.F., Sogge C.D.: Global Strichartz estimates for nontrapping perturbations of the Laplacian. Comm. Par. Diff. Eqs. 25(11–12), 2171–2183 (2000) · Zbl 0972.35014 · doi:10.1080/03605300008821581
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.