×

Shortfall risk minimising strategies in the binomial model: characterisation and convergence. (English) Zbl 1132.90375

Summary: In this paper we study the dependence on the loss function of the strategy, which minimises the expected shortfall risk when dealing with a financial contingent claim in the particular situation of a binomial model. After having characterised the optimal strategies in the particular cases when the loss function is concave, linear or strictly convex, we analyse how optimal strategies change when we approximate a loss function with a sequence of suitable loss functions.

MSC:

90C39 Dynamic programming
91B30 Risk theory, insurance (MSC2010)
Full Text: DOI

References:

[1] Cvitanic J (1998) Methods of partial hedging. Asia-Pac Financ Markets 00:1–28
[2] Cvitanic J (2000) Minimizing expected loss of hedging in incomplete and constrained markets. SIAM J Control Optim 38(4):1050–1066 · Zbl 1034.91037 · doi:10.1137/S036301299834185X
[3] Cvitanic J, Karatzas I (1999) On dynamic measure of risk. Finance Stoch 3(4):451–482 · Zbl 0982.91030 · doi:10.1007/s007800050071
[4] Cvitanic J, Karatzas I (2001) Generalized Neyman-Pearson lemma via convex duality. Bernoulli 7(1):79–97 · Zbl 1054.62056 · doi:10.2307/3318603
[5] Duffie D (1999) Dynamic asset pricing theory. Princeton University Press, Princeton · Zbl 1140.91041
[6] Favero G (2001) Shortfall risk minimization under model uncertainty in the binomial case: adaptive and robust approaches. Math Meth Oper Res 53:493–503 · Zbl 1061.91018 · doi:10.1007/s001860100127
[7] Favero G, Vargiolu T (2002) Robustness of shortfall risk minimising strategies in the binomial model. Università degli studi di Padova, Dipartimento di matematica pura e applicata, Preprint n. 14 - 2002. http://www.math.unipd.it/\(\sim\) favero/workpage.html
[8] Föllmer H, Leukert P (2000a) Quantile hedging. Finance Stoch 3: 251–277 · Zbl 0977.91019 · doi:10.1007/s007800050062
[9] Föllmer H, Leukert P (2000b) Efficient hedging: cost versus shortfall risk. Finance Stoch 4:117–146 · Zbl 0956.60074
[10] Föllmer H, Schied A (2002) Convex measures of risk and trading constraints. Finance Stoch 6:429–447 · Zbl 1041.91039 · doi:10.1007/s007800200072
[11] Jouini E, Napp C (2004) Convergence of utility functions and convergence of optimal strategies. Finance Stoch 8(1):133–144 · Zbl 1052.91047 · doi:10.1007/s00780-003-0106-3
[12] Kirch M (2001) Efficient hedging in incomplete markets under model uncertainty. Ph.D. Thesis, Humboldt University
[13] Pham H (2000) Dynamic L p - hedging in discrete time under cone constraints. SIAM J Control Opt 38:665–682 · Zbl 0964.91022 · doi:10.1137/S0363012998341095
[14] Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton · Zbl 0193.18401
[15] Runggaldier WJ, Trivellato B, Vargiolu T (2002) A Bayesian adaptive control approach to risk management in a binomial model. In: Dalang RC, Dozzi M, Russo F (eds) Proceedings of the Ascona 99 seminar on stochastic analysis, random fields and applications. Birkhauser, pp 243–258 · Zbl 1060.91086
[16] Schulmerich M, Trautmann S (2003) Local expected shortfall-hedging in discrete time. Eur Finance Rev 7(1):75–102 · Zbl 1032.91069 · doi:10.1023/A:1022506825795
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.