×

Exceptional families of elements for optimization problems in reflexive Banach spaces with applications. (English) Zbl 1282.90237

Summary: In this paper, we propose a new notion of ‘exceptional family of elements’ for convex optimization problems. By employing the notion of ‘exceptional family of elements’, we establish some existence results for convex optimization problem in reflexive Banach spaces. We show that the nonexistence of an exceptional family of elements is a sufficient and necessary condition for the solvability of the optimization problem. Furthermore, we establish several equivalent conditions for the solvability of convex optimization problems. As applications, the notion of ‘exceptional family of elements’ for convex optimization problems is applied to the constrained optimization problem and convex quadratic programming problem and some existence results for solutions of these problems are obtained.

MSC:

90C48 Programming in abstract spaces
90C25 Convex programming
Full Text: DOI

References:

[1] Smith, T.E.: A solution condition for complementarity problems, with an application to spatial price equilibrium. Appl. Math. Comput. 15, 61-69 (1984) · Zbl 0545.90094 · doi:10.1016/0096-3003(84)90053-5
[2] Isac, G., Bulavski, V., Kalashnikov, V.: Exceptional families, topological degree, and complementarity problems. J. Glob. Optim. 10, 207-225 (1997) · Zbl 0880.90127 · doi:10.1023/A:1008284330108
[3] Isac, G., Obuchowska, W.T.: Functions without exceptional family of elements and complementarity problems. J. Optim. Theory Appl. 99, 147-163 (1998) · Zbl 0914.90252 · doi:10.1023/A:1021704311867
[4] Zhao, Y.B., Isac, G.: Quasi-P∗-maps, and P(τ,α,β)-maps, exceptional family of elements and complementarity problems. J. Optim. Theory Appl. 105, 213-231 (2000) · Zbl 0971.90093 · doi:10.1023/A:1004674330768
[5] Zhao, Y.B., Han, J., Qi, H.: Exceptional families and existence theorems for variational inequality problems. J. Optim. Theory Appl. 101, 475-495 (1999) · Zbl 0947.49005 · doi:10.1023/A:1021701913337
[6] Isac, G., Kalashnikov, V.: Exceptional family of elements, Leray-Schauder alternative, pseudomonotone operators, and complementarity. J. Optim. Theory Appl. 109, 69-83 (2001) · Zbl 0984.49006 · doi:10.1023/A:1017509704362
[7] Isac, G., Li, J.: Exceptional family of elements and the solvability of complementarity problems in uniformly smooth and uniformly convex Banach spaces. J. Zhejiang Univ. Sci. 6A, 289-295 (2005) · Zbl 1107.47039 · doi:10.1631/jzus.2005.A0289
[8] Li, J., Huang, N.J.: Exceptional families of elements for set-valued mappings: an application to non-linear complementarity problems. Appl. Math. Lett. 21, 42-46 (2008) · Zbl 1140.47037 · doi:10.1016/j.aml.2006.07.017
[9] Zhao, Y.B., Yuan, J.Y.: An alternative theorem for generalized variational inequalities and solvability of nonlinear quasi-\(P^M_*\)-complementarity problems. Appl. Math. Comput. 109, 167-182 (2000) · Zbl 1021.49009 · doi:10.1016/S0096-3003(99)00019-3
[10] Zhao, Y.B.: Exceptional family and finite-dimensional variational inequality over polyhedral convex set. Appl. Math. Comput. 87, 111-126 (1997) · Zbl 0912.49009 · doi:10.1016/S0096-3003(96)00224-X
[11] Han, J., Huang, Z.H., Fang, S.C.: Solvability of variational inequality problems. J. Optim. Theory Appl. 122, 501-520 (2004) · Zbl 1082.49009 · doi:10.1023/B:JOTA.0000042593.74934.b7
[12] Bianchi, M., Hadjisavvas, N., Schaible, S.: Exceptional families of elements for variational inequalities in Banach spaces. J. Optim. Theory Appl. 129, 23-31 (2006) · Zbl 1136.49007 · doi:10.1007/s10957-006-9041-8
[13] Isac, G., Zhao, Y.B.: Exceptional family of elements and the solvability of variational inequalities for unbounded sets in infinite-dimensional Hilbert spaces. J. Math. Anal. Appl. 246, 544-556 (2000) · Zbl 0966.49006 · doi:10.1006/jmaa.2000.6817
[14] Li, J., Whitaker, J.: Exceptional family of elements and solvability of variational inequalities for mappings defined only on closed convex cones in Banach spaces. J. Math. Anal. Appl. 310, 254-261 (2005) · Zbl 1135.49008 · doi:10.1016/j.jmaa.2005.02.006
[15] Rockafellar, R.T.: Convex Analysis. Princeton University Press, New Jersey (1970) · Zbl 0193.18401
[16] Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Pure and Applied Mathematics. Wiley, New York (1984) · Zbl 0641.47066
[17] Adly, S., Théra, M., Ernst, E.: Stability of the solution set of non-coercive variational inequalities. Commun. Contemp. Math. 4, 145-160 (2002) · Zbl 1012.47052 · doi:10.1142/S0219199702000579
[18] Fan, J.H., Wang, X.G.: Solvability of generalized variational inequality problems for unbounded sets in reflexive Banach spaces. J. Optim. Theory Appl. 143, 59-74 (2009) · Zbl 1179.58009 · doi:10.1007/s10957-009-9556-x
[19] Crouzeix, J.P.: Pseudomonotone variational inequality problems: existence of solutions. Math. Program. 78, 305-314 (1997) · Zbl 0887.90167
[20] Daniilidis, A., Hadjisavvas, N.: Coercivity conditions and variational inequalities. Math. Program. 86, 433-438 (1999) · Zbl 0937.49003 · doi:10.1007/s101070050097
[21] Carl, S., Le, V.K., Motreanu, D.: In: Nonsmooth Variational Problems and Their Inequalities: Comparison Principles and Applications. Springer Monographs in Mathematics (2007) · Zbl 1109.35004
[22] Zhou, S.Z., Bai, M.R.: A new exceptional family of elements for a variational inequality problem on Hilbert space. Appl. Math. Lett. 17, 423-428 (2004) · Zbl 1076.47052 · doi:10.1016/S0893-9659(04)90084-5
[23] Zhao, Y.B., Han, J.: Exceptional family of elements for a variational inequality problem and its applications. J. Glob. Optim. 14, 313-330 (1999) · Zbl 0932.49012 · doi:10.1023/A:1008202323884
[24] Zhao, Y.B.: Existence of a solution to nonlinear variational inequality under generalized positive homogeneity. Oper. Res. Lett. 25, 231-239 (1999) · Zbl 0955.49004 · doi:10.1016/S0167-6377(99)00024-3
[25] Dostál, Z.: On solvability of convex noncoercive quadratic programming problems. J. Optim. Theory Appl. 143, 413-416 (2009) · Zbl 1175.90307 · doi:10.1007/s10957-009-9563-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.