×

Cancer onset and progression: a genome-wide, nonlinear dynamical systems perspective on onconetworks. (English) Zbl 1451.92105

Summary: It is hypothesized that the many human cell types corresponding to multiple states is supported by an underlying nonlinear dynamical system (NDS) of transcriptional regulatory network (TRN) processes. This hypothesis is validated for epithelial cells whose TRN is found to support an extremely complex array of states that we term a “bifurcation nexus”, for which we introduce a quantitative measure of complexity. The TRN used is constructed and analyzed by integrating a database of TRN information, cDNA microarray data analyzers, bioinformatics modules, a transcription/translation/post-translation kinetic model, and NDS analysis software.
Results of this genome-wide approach suggest that a cell can be induced to persist in one state or to transition between distinct states; apparently irreversible transitions can be reversed when the high dimensional space of extracellular and intracellular parameters is understood. As conditions change, certain cellular states (cell lines) are no longer supported, new ones emerge, and transitions (cell differentiation or death) occur. The accumulation of simulated point mutations (minor changes which individually are insignificant) lead to occasional dramatic transitions. The genome-wide scope of many of these transitions is shown to arise from the cross-linked TRN structure. These notions imply that studying individual oncogenes may not be sufficient to understand cancer; rather, “onconetworks” (subsets of strongly coupled genes supporting multiple cell states) should be considered. Our approach reveals several epithelial onconetworks, each involving oncogenes and anti-tumor and supporting genes.

MSC:

92C32 Pathology, pathophysiology
92C42 Systems biology, networks
Full Text: DOI

References:

[1] Baselga, J.; Norton, L.; Albanell, J.; Kim, Y. M.; Mendelsohn, J., Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts, Cancer Res., 58, 2825-2831 (1998)
[2] Bosc, D. G.; Janknecht, R., Regulation of Her2/neu promoter activity by the ETS transcription factor, ER81, J. Cell Biochem., 86, 174-183 (2002)
[3] Bosc, D. G.; Goueli, B. S.; Janknecht, R., HER2/Neu-mediated activation of the ETS transcription factor ER81 and its target gene MMP-1, Oncogene, 20, 6215-6224 (2001)
[4] Doedel, E. J.; Keller, H. B.; Kernevez, J. P., Numerical analysis and control of bifurcation problems, Part I, Int. J. Bifurc. Chaos, 1, 493-520 (1991) · Zbl 0876.65032
[5] Doedel, E. J.; Keller, H. B.; Kernevez, J. P., Numerical analysis and control of bifurcation problems, Part II, Int. J. Bifurc. Chaos, 1, 745-772 (1991) · Zbl 0876.65060
[6] Goel, A.; Janknecht, R., Acetylation-mediated transcriptional activation of the ETS protein ER81 by p300, P/CAF, and HER2/Neu, Mol. Cell Biol., 23, 6243-6254 (2003)
[7] Goel, A.; Janknecht, R., Concerted Activation of ETS Protein ER81 by p160 Coactivators, the Acetyltransferase p300 and the Receptor Tyrosine Kinase HER2/Neu, J. Biol. Chem., 279, 14909-14916 (2004)
[8] Hahn, H.-S.; Ortoleva, P.; Ross, J., Chemical oscillations and multiple steady states due to variable boundary permeability, J. Theor. Biol., 41, 503-521 (1973)
[9] Hannsgen, K. B.; Tyson, J. J., Stability of the steady-state size distribution in a model of cell growth and division, J. Math. Biol., 22, 293-301 (1985) · Zbl 0571.92023
[10] Hervagault, J.-F.; Ortoleva, P. J.; Ross, J., A plausible model for reversal of neoplastic transformations in plants based on multiple steady states, Proc. Natl Acad Sci. USA, 88, 97-10800 (1991)
[11] Kauffman, S. A., Homeostasis and differentiation in random genetic control networks, Nature, 224, 177-178 (1969)
[12] Lin, C.-Y.; Strom, A.; Vega, V. B.; Kong, S. L.; Yeo, A. L.; Thomsen, J. S.; Chan, W. C.; Doray, B.; Bangarusamy, D. K.; Ramasamy, A., Estrogen receptor a target gene and response element discovery in breast tumor cells, Genome, 5, R66 (2004)
[13] Marty, M.; Cognetti, F.; Maraninchi, D.; Snyder, R.; Mauriac, L.; Tubiana-Hulin, M.; Chan, S.; Grimes, D.; Anton, A.; Lluch, A., Randomized phase II trail of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epitermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group, J. Clin. Oncol., 23, 4265-4274 (2005)
[14] Mochizuki, A., An analytical study of the number of steady states in gene regulatory networks, J. Theor. Biol., 236, 291-310 (2005) · Zbl 1442.92052
[15] Nicolis, G.; Prigogine, I., Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order Through Fluctuations (1977), Wiley Interscience: Wiley Interscience New York · Zbl 0363.93005
[16] Novak, B.; Tyson, J. J., Modeling the cell division cycle: M-phase trigger, oscillations, and size control, J. Theor. Biol., 165, 101-134 (1993)
[17] Obeyesekere, M. N.; Tecarro, E.; Lozano, G., Model predictions of MDM2 mediated cell regulation, Cell Cycle, 3, 655-661 (2004)
[18] Ortoleva, P.; Ross, J., A chemical instability mechanism for asymmetric cell differentiation, Biophys. Chem., 1, 87-96 (1973)
[19] Ortoleva, P.; Ross, J., A theory of asymmetric cell division (differentiation), Develop. Biol., 34, F19-F23 (1973)
[20] Ortoleva, P.; Brun, Y.; Berry, E.; Fan, J.; Fontus, M.; Navid, A.; Sayyed-Ahmad, A.; Shreif, Z.; Stanley, F.; Tuncay, K.; Weitzke, E.; Wu, L., Karyote: physico-chemical genome, proteome, metabolome cell modeling system, OMICS, J. Integr. Biol., 7, 169-183 (2003)
[21] Pegram, M.; Hsu, S.; Lewis, G.; Pietras, R.; Beryt, M.; Sliwkowski, M.; Coombs, D.; Baly, D.; Kabbinavar, F.; Slamon, D., Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers, Oncogene, 18, 2241-2251 (1999)
[22] Piccart-Gebhart, M. J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C., Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer, N. Engl. J. Med., 353, 1659-1672 (2005)
[23] Pietras, R. J.; Pegram, M. D.; Finn, R. S.; Maneval, D. A.; Slamon, D. J., Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs, Oncogene, 17, 2235-2249 (1998)
[24] Rashevsky, N., 1960. Mathematical Biophysics: Physico-Mathematical Foundations of Biology, third ed., vol. 1. Dover, New York.
[25] Sassone-Crosi, P.; Cisson, J. C.; Verma, I. M., Transcriptional autoregulation of the proto-oncogene fos, Nature, 334, 314-319 (1988)
[26] Sayyed-Ahmad, A.; Tuncay, K.; Ortoleva, P., Toward automated cell model development through information theory, J. Phys. Chem. A, 107, 10554-10565 (2003)
[27] Slutsky, M.; Mirny, L. A., Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential, Biophys. J., 87, 4021-4035 (2004)
[28] Turing, A. M., The chemical basis of morphogenesis, Trans. R. Soc. London, 237, 37-42 (1952) · Zbl 1403.92034
[29] Újvári, A.; Aron, R.; Eisenhaure, T.; Cheng, E.; Smicun, Y.; Halaban, R.; Hebert, D. N., Translation rate of tyrosinase determines its N-linked glycosylation level, J. Biol. Chem., 276, 5924-5931 (2001)
[30] Vogt, P. K.; Aoki, M.; Bottoli, I.; Chang, H.; Fu, S.; Hecht, A.; Iacovoni, J. S.; Jiang, B.; Kruse, U., A random walk in oncogene space: the quest for targets, Cell Growth Differentiation, 10, 777-784 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.