×

Cortically restricted production of \(\mathrm{IP}_3\) leads to propagation of the fertilization \(\mathrm{Ca^{2 +}}\) wave along the cell surface in a model of the Xenopus egg. (English) Zbl 1464.92083

Summary: The fertilization \(\mathrm{Ca^{2 +}}\) wave in Xenopus laevis is a single, large wave of elevated free cytosolic \(\mathrm{Ca^{2 +}}\) concentration that emanates from the point of sperm-egg fusion and traverses the entire diameter of the egg. This phenomenon appears to involve an increase in inositol-1,4,5-trisphosphate (\( \mathrm{IP}_3\)) resulting from interaction of the sperm and egg, which then results in the activation of the endoplasmic reticulum \(\mathrm{Ca^{2 +}}\) release machinery. We have proposed models based on a static elevated distribution of \( \mathrm{IP}_3\), and dynamic \( [\mathrm{IP}_3]\), however, these models have suggested that the fertilization wave passes through the center of the egg. Complementing these earlier models, we propose a more detailed model of the fertilization \(\mathrm{Ca^{2 +}}\) wave in Xenopus eggs to explore the hypothesis that \( \mathrm{IP}_3\) is produced only at or near the plasma membrane. In this case, we find that the wave propagates primarily through the cortex of the egg, and that \(\mathrm{Ca^{2 +}}\)-induced production of \( \mathrm{IP}_3\) at the plasma membrane allows \( \mathrm{IP}_3\) to propagate in advance of the wave. Our model includes \(\mathrm{Ca^{2 +}}\)-dependent production of \( \mathrm{IP}_3\) at the plasma membrane and \( \mathrm{IP}_3\) degradation. Simulations in 1 dimension and axi-symmetric 3 dimensions illustrate the basic features of the wave.

MSC:

92C37 Cell biology
92C15 Developmental biology, pattern formation
Full Text: DOI

References:

[1] Allen, V.; Swigart, P.; Cheung, R.; Cockcroft, S.; Katan, M., Regulation of inositol lipid-specific phospholipase cdelta by changes in \(\operatorname{Ca}^{2 +}\) ion concentrations, Biochem. J., 327, Part 2, 545-552 (1997)
[2] Atri, A.; Amundson, J.; Clapham, D.; Sneyd, J., A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte, Biophys. J., 65, 4, 1727-1739 (1993)
[3] Banno, Y.; Okano, Y.; Nozawa, Y., Thrombin-mediated phosphoinositide hydrolysis in Chinese hamster ovary cells overexpressing phospholipase C-delta 1, J. Biol. Chem., 269, 22, 15846-15852 (1994)
[4] Berridge, M. J.; Cobbold, P. H.; Cuthbertson, K. S., Spatial and temporal aspects of cell signalling, Philos. Trans. R. Soc. London—Ser. BBiol. Sci., 320, 1199, 325-343 (1988)
[5] Biden, T. J.; Peter-Riesch, B.; Schlegel, W.; Wollheim, C. B., \( \operatorname{Ca}^{2 +} \)-mediated generation of inositol 1,4,5-triphosphate and inositol 1,3,4,5-tetrakisphosphate in pancreatic islets. Studies with \(K^+\), glucose, and carbamylcholine, J. Biol. Chem., 262, 8, 3567-3571 (1987)
[6] Bugrim, A.; Fontanilla, R.; Keizer, J.; Nuccitelli, R., Sperm initiate a \(\operatorname{Ca}^{2 +}\) wave in frog eggs that is more similar to \(\operatorname{Ca}^{2 +}\) waves initiated by \(\operatorname{IP}_3\) than by \(\operatorname{Ca}^{2 +} \), Biophys. J., 84, 3, 1580-1590 (2003)
[7] Busa, W. B.; Nuccitelli, R., An elevated free cytosolic \(\operatorname{Ca}^{2 +}\) wave follows fertilization in eggs of the frog, Xenopus laevis, J. Cell. Biol., 100, 4, 1325-1329 (1985)
[8] Busa, W. B.; Ferguson, J. E.; Joseph, S. K.; Williamson, J. R.; Nuccitelli, R., Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of \(\operatorname{Ca}^{2 +}\) release from intracellular stores, J. Cell. Biol., 101, 2, 677-682 (1985)
[9] Campanella, C.; Andreuccetti, P.; Taddei, C.; Talevi, R., The modifications of cortical endoplasmic reticulum during in vitro maturation of Xenopus laevis oocytes and its involvement in cortical granule exocytosis, J. Exp. Zool., 229, 2, 283-293 (1984)
[10] Capozzi, I.; Tonon, R.; D’Andrea, P., \( \operatorname{Ca}^{2 +} \)-sensitive phosphoinositide hydrolysis is activated in synovial cells but not in articular chondrocytes, Biochem. J., 344, Part 2, 545-553 (1999)
[11] Cuthbertson, K. S.; Chay, T. R., Modelling receptor-controlled intracellular calcium oscillators, Cell Calcium, 12, 2-3, 97-109 (1991)
[12] De Young, G. W.; Keizer, J., A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in \(\operatorname{Ca}^{2 +}\) concentration, Proc. Natl Acad. Sci. USA, 89, 20, 9895-9899 (1992)
[13] Dupont, G.; Erneux, C., Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on \(\operatorname{Ca}^{2 +}\) oscillations, Cell Calcium, 22, 5, 321-331 (1997)
[14] Dupont, G.; Koukoui, O.; Clair, C.; Erneux, C.; Swillens, S.; Combettes, L., \( \operatorname{Ca}^{2 +}\) oscillations in hepatocytes do not require the modulation of InsP3 3-kinase activity by \(\operatorname{Ca}^{2 +} \), FEBS Lett., 534, 1-3, 101-105 (2003)
[15] Fontanilla, R. A.; Nuccitelli, R., Characterization of the sperm-induced calcium wave in Xenopus eggs using confocal microscopy, Biophys. J., 75, 4, 2079-2087 (1998)
[16] Gardiner, D. M.; Grey, R. D., Membrane junctions in Xenopus eggstheir distribution suggests a role in calcium regulation, J. Cell. Biol., 96, 4, 1159-1163 (1983)
[17] Hirose, K.; Kadowaki, S.; Tanabe, M.; Takeshima, H.; Iino, M., Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex \(\operatorname{Ca}^{2 +}\) mobilization patterns, Science, 284, 5419, 1527-1530 (1999)
[18] Kendall, D. A.; Nahorski, S. R., Inositol phospholipid hydrolysis in rat cerebral cortical slicesII. Calcium requirement, J. Neurochem., 42, 5, 1388-1394 (1984)
[19] Kim, Y. H.; Park, T. J.; Lee, Y. H.; Baek, K. J.; Suh, P. G.; Ryu, S. H.; Kim, K. T., Phospholipase C-delta1 is activated by capacitative calcium entry that follows phospholipase C-beta activation upon bradykinin stimulation, J. Biol. Chem., 274, 37, 26127-26134 (1999)
[20] Kume, S.; Muto, A.; Aruga, J.; Nakagawa, T.; Michikawa, T.; Furuichi, T.; Nakade, S.; Okano, H.; Mikoshiba, K., The \(Xenopus \operatorname{IP}_3\) receptorstructure, function, and localization in oocytes and eggs, Cell, 73, 3, 555-570 (1993)
[21] Kume, S.; Yamamoto, A.; Inoue, T.; Muto, A.; Okano, H.; Mikoshiba, K., Developmental expression of the inositol 1,4,5-trisphosphate receptor and structural changes in the endoplasmic reticulum during oogenesis and meiotic maturation of Xenopus laevis, Dev. Biol., 182, 2, 228-239 (1997)
[22] Lechleiter, J.; Girard, S.; Peralta, E.; Clapham, D., Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes, Science, 252, 5002, 123-126 (1991)
[23] Li, Y. X.; Rinzel, J., Equations for InsP3 receptor-mediated \([ \operatorname{Ca}^{2 +} ]\) i oscillations derived from a detailed kinetic modela Hodgkin-Huxley like formalism, J. Theor. Biol., 166, 4, 461-473 (1994)
[24] Meyer, T.; Stryer, L., Molecular model for receptor-stimulated calcium spiking, Proc. Natl Acad. Sci. USA, 85, 14, 5051-5055 (1988)
[25] Nuccitelli, R., How do sperm activate eggs?, Curr. Top. Dev. Biol., 25, 1-16 (1991)
[26] Nuccitelli, R.; Yim, D. L.; Smart, T., The sperm-induced \(\operatorname{Ca}^{2 +}\) wave following fertilization of the Xenopus egg requires the production of Ins(1, 4, 5)P3, Dev. Biol., 158, 1, 200-212 (1993)
[27] Okubo, Y.; Kakizawa, S.; Hirose, K.; Iino, M., Visualization of IP(3) dynamics reveals a novel AMPA receptor-triggered IP(3) production pathway mediated by voltage-dependent \(\operatorname{Ca}^{(2 +)}\) influx in Purkinje cells, Neuron, 32, 1, 113-122 (2001)
[28] Pando, B.; Pearson, J. E.; Dawson, S. P., Sheet excitability and nonlinear wave propagation, Phys. Rev. Lett., 91, 25, 258101 (2003), (Epub 2003 December 16)
[29] Rhee, S. G., Regulation of phosphoinositide-specific phospholipase C, Annu. Rev. Biochem., 70, 281-312 (2001)
[30] Rhee, S. G.; Bae, Y. S., Regulation of phosphoinositide-specific phospholipase C isozymes, J. Biol. Chem., 272, 24, 15045-15048 (1997)
[31] Schuster, S.; Marhl, M.; Hofer, T., Modelling of simple and complex calcium oscillations, Eur. J. Biochem., 269, 5, 1333-1355 (2002)
[32] Sims, C. E.; Allbritton, N. L., Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate by the oocytes of Xenopus laevis, J. Biol. Chem., 273, 7, 4052-4058 (1998)
[33] Smart, D.; Smith, G.; Lambert, G., Mu-opioids activate phospholipase C in SHSY5Y human neuroblastoma cells via calcium-channel opening, Biochem. J., 305, Part 2, 577-581 (1995)
[34] Smart, D.; Wandless, A.; Lambert, D. G., Activation of phospholipase C in SH-SY5Y neuroblastoma cells by potassium-induced calcium entry, Br. J. Pharmacol., 116, 2, 1797-1800 (1995)
[35] Snow, P.; Yim, D. L.; Leibow, J. D.; Saini, S.; Nuccitelli, R., Fertilization stimulates an increase in inositol trisphosphate and inositol lipid levels in Xenopus eggs, Dev. Biol., 180, 1, 108-118 (1996)
[36] Stith, B. J.; Goalstone, M.; Silva, S.; Jaynes, C., Inositol 1,4,5-trisphosphate mass changes from fertilization through first cleavage in Xenopus laevis, Mol. Biol. Cell, 4, 4, 435-443 (1993)
[37] Stith, B. J.; Espinoza, R.; Roberts, D.; Smart, T., Sperm increase inositol 1,4,5-trisphosphate mass in Xenopus laevis eggs preinjected with calcium buffers or heparin, Dev. Biol., 165, 1, 206-215 (1994)
[38] Swann, K.; Parrington, J.; Jones, K. T., Potential role of a sperm-derived phospholipase C in triggering the egg-activating \(\operatorname{Ca}^{2 +}\) signal at fertilization, Reproduction, 122, 6, 839-846 (2001)
[39] Tian, J.; Gong, H.; Thomsen, G. H.; Lennarz, W. J., Gamete interactions in Xenopus laevisidentification of sperm binding glycoproteins in the egg vitelline envelope, J. Cell Biol., 136, 5, 1099-1108 (1997)
[40] Tian, J.; Gong, H.; Thomsen, G. H.; Lennarz, W. J., Xenopus laevis sperm-egg adhesion is regulated by modifications in the sperm receptor and the egg vitelline envelope, Dev. Biol., 187, 2, 143-153 (1997)
[41] Wagner, J.; Keizer, J., Effects of rapid buffers on \(\operatorname{Ca}^{2 +}\) diffusion and \(\operatorname{Ca}^{2 +}\) oscillations, Biophys. J., 67, 1, 447-456 (1994)
[42] Wagner, J.; Li, Y. X.; Pearson, J.; Keizer, J., Simulation of the fertilization \(\operatorname{Ca}^{2 +}\) wave in Xenopus eggs, Biophys. J., 75, 4, 2088-2097 (1998)
[43] Wagner, J.; Fall, C. P.; Hong, F.; Sims, C. E.; Allbritton, N. L.; Fontanilla, R. A.; Moraru, I. I.; Loew, L. M.; Nuccitelli, R., A wave of \(\operatorname{IP} 3\) production accompanies the fertilization \(\operatorname{Ca}^{2 +}\) wave in the egg of the fron Xenopus laevistheoretical and experimental support, Cell Calcium, 35, 5, 433-447 (2004)
[44] Wahl, M. I.; Jones, G. A.; Nishibe, S.; Rhee, S. G.; Carpenter, G., Growth factor stimulation of phospholipase C-gamma 1 activity. Comparative properties of control and activated enzymes, J. Biol. Chem., 267, 15, 10447-10456 (1992)
[45] Wakui, M.; Petersen, O. H., Cytoplasmic \(\operatorname{Ca}^{2 +}\) oscillations evoked by acetylcholine or intracellular infusion of inositol trisphosphate or \(\operatorname{Ca}^{2 +}\) can be inhibited by internal \(\operatorname{Ca}^{2 +} \), FEBS Lett., 263, 2, 206-208 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.