×

Constraining neutrino properties and smoothing the Hubble tension via the LSBR model. (English) Zbl 1528.83046

Summary: In this paper, we study phantom dark energy (DE) effects on cosmological parameters by considering the different properties of neutrinos. The Little Sibling of the Big Rip (LSBR), which is the phantom DE model under consideration in the current paper induces an abrupt event in the future and deviates from the \(\Lambda\) CDM model by an additional constant parameter. We study different neutrino properties, namely the standard active neutrinos with \(N_{\mathrm{eff}}=3.044\), the standard massive neutrinos, and possible sterile neutrinos with varying \(N_{\mathrm{eff}}\). In the case of standard neutrinos, a slight increase in the \(H_0\) parameter is observed in the LSBR model compared to the \(\Lambda\) CDM model. In the case of massive neutrinos, we notice that LSBR cannot reduce the upper limits on the sum of the neutrino masses but it can increase the value of \(H_0\). Furthermore, in the case of relativistic neutrinos, we obtain \(H_0 = 70.4\pm 0.78\)km s\(^{-1} Mpc^{-1}\) for LSBR model, which reduces the \(H_0\) tension to \(2.03\sigma\).

MSC:

83C56 Dark matter and dark energy
83F05 Relativistic cosmology
81V15 Weak interaction in quantum theory
60F10 Large deviations

Keywords:

neutrino masses

Software:

MontePython 3; CLASS
Full Text: DOI

References:

[1] Riess, AG, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009-1038 (1998)
[2] Perlmutter, S., Measurements of \(\Omega\) and \(\Lambda\) from 42 High-redshift supernovae, Astrophys. J., 517, 565-586 (1999) · Zbl 1368.85002
[3] Astier, P.; Pain, R., Observational evidence of the accelerated expansion of the Universe, Comptes Rendus Phys., 13, 521-538 (2012)
[4] Ade, P.A., Aghanim, N., Planck Collaboration, et al.: Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. J. 594, 13 (2016). arXiv:1502.01589 [astro-ph.CO]
[5] Alam, S., Ata, M., BOSS Collaboration, et al.: The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. MNRAS 470, 2617-2652 (2017). arXiv:1607.03155 [astro-ph.CO]
[6] Abbott, T.M.C., DES Collaboration, et al.: Dark energy survey year 1 results: cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D98, 043526 (2018). arXiv:1708.01530 [astro-ph.CO]
[7] Haridasu, BS; Luković, VV; D’Agostino, R.; Vittorio, N., Strong evidence for an accelerating Universe, Astron. Astrophys. J., 600, L1 (2017)
[8] Tutusaus, I.; Lamine, B.; Blanchard, A., Model-independent cosmic acceleration and redshift-dependent intrinsic luminosity in type-Ia supernovae, Astron. Astrophys. J, 625, A15 (2019)
[9] Caldwell, RR; Doran, M., Cosmic microwave background and supernova constraints on quintessence: concordance regions and target models, Phys. Rev. D, 69 (2004)
[10] Eisenstein, DJ, Detection of the Baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies, Astrophys. J., 633, 560 (2005)
[11] Tsujikawa, S.: Dark energy: investigation and modeling, Astrophys. Spa. Sci. Lib 594 (2011). arXiv:1004.1493 [astro-ph.CO]
[12] Amendola, L., Tsujikawa, S.: Dark Energy, Theory and Observations, Cambridge University Press (2010) · Zbl 1200.85001
[13] Weinberg, S., The cosmological constant problem, Rev. Mod. Phys. J., 61, 1-23 (1989) · Zbl 1129.83361
[14] Carroll, MS, The cosmological constant, Living Rev. Relativ., 4, 1-56 (2001) · Zbl 1023.83022
[15] Peebles, PJE; Ratra, B., The cosmological constant and dark energy, Rev. Mod. Phys, 75, 559-606 (2003) · Zbl 1205.83082
[16] Martin, J., Everything you always wanted to know about the cosmological constant problem (but were afraid to ask), Comptes Rendus Phys., 13, 566-665 (2012)
[17] Alam, U.; Bag, S.; Sahni, V., Constraining the cosmology of the phantom brane using distance measures, Phys. Rev. D, 95, 023524 (2017)
[18] Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, DF; Riess, AG; Silk, J., In the realm of the Hubble tension-a review of solutions, Class. Quantum Grav., 38 (2021)
[19] Bouhmadi-Lopez, M.; Errahmani, A.; Martin-Moruno, P.; Ouali, T.; Tavakoli, Y., The little sibling of the big rip singularity, Int. J. Mod. Phys. D, 24, 1550078 (2015)
[20] Bouali, A.; Albarran, I.; Bouhmadi-López, M.; Ouali, T., Cosmological constraints of phantom dark energy models, Phys. Dark. Univ., 26 (2019)
[21] Albarran, I.; Bouhmadi-López, M.; Cabral, F.; Martín-Moruno, P., The quantum realm of the “Little Sibling” of the Big Rip singularity, JCAP., 11, 044 (2015)
[22] Bouhmadi-López, M.; Brizuela, D.; Garay, I., Quantum behavior of the “Little Sibling” of the Big Rip induced by a three-form field, JCAP., 2018, 031 (2018) · Zbl 1527.83112
[23] Borislavov, TV; Bouhmadi-López, M.; Martín-Moruno, P., Classical and quantum fate of the little sibling of the big rip in f(R) cosmology, Phys. Rev. D, 100 (2019)
[24] Riess, AG, Cosmic distances calibrated to 1
[25] Valentino, ED; Melchiorri, A.; Silk, J., Reconciling Planck with the local value of \(H_0\) in extended parameter space, Phys Lett. B, 761, 242-246 (2016)
[26] Cedeño, FXL, Tracker phantom field and a cosmological constant: dynamics of a composite dark energy model, Phys. Rev. D., 104 (2021)
[27] Valentino, ED; Melchiorri, A.; Linder, EV; Silk, J., Constraining dark energy dynamics in extended parameter space, Phys. Rev. D, 96 (2017)
[28] Huang, Q., Wang, K.: How the dark energy can reconcile Planck with local determination of the hubble constant, EPJC 76 (2016), arXiv:1606.05965 [astro-ph.CO]
[29] Valentino, ED; Melchiorri, A.; Linder, EV; Silk, J., How the dark energy can reconcile Planck with local determination of the hubble constant, Phys. Rev. D, 96, 023523 (2017)
[30] Yang, W.; Pan, S.; Valentino, ED; Saridakis, EN; Chakraborty, S., Observational constraints on one-parameter dynamical dark-energy parametrizations and the \(H_0\) tension, Astrophys. J. Lett., 99 (2019)
[31] Alam, U.; Bag, S.; Sahni, V., Constraining the cosmology of the phantom brane using distance measures, Phys. Rev. D, 95 (2017)
[32] Alestas, G.; Kazantzidis, L.; Perivolaropoulos, L., \(H_0\) tension, phantom dark energy and cosmological parameter degeneracies, Phys. Rev. D, 101 (2020)
[33] Valentino, ED; Mukherjee, A.; Sen, AA, Dark energy with phantom crossing and the \(H_0\) tension, Entropy J., 23, 404 (2021)
[34] Vagnozzi, S., New physics in light of the \(H_0\) tension: an alternative view, Phys. Rev. D, 102 (2020)
[35] Sakstein, J.; Trodden, M., Early dark energy from massive neutrinos as a natural resolution of the Hubble tension, Phys. Rev. Lett., 124 (2020)
[36] Blinov, Nikita, Constraining the self-interacting neutrino interpretation of the Hubble tension, Phys. Rev. Lett., 123 (2019)
[37] Carneiro, S., Is the \(H_0\) tension suggesting a 4th neutrino’s generation?, Phys. Rev. D, 100, 023505 (2019)
[38] Lesgourgues, J.; Pastor, S., Massive neutrinos and cosmology, Phys. Rept., 429, 307-379 (2006)
[39] Lattanzi, M.; Gerbino, M., Status of neutrino properties and future prospects: cosmological and astrophysical constraints, Front. Phys., 5, 70 (2018)
[40] de Salas, PF; Gariazzo, S.; Mena, O.; Ternes, CA; Tórtola, M., Neutrino mass ordering from oscillations and beyond: 2018 status and future prospects, Front. Astron. Space Sci., 5, 36 (2018)
[41] Vagnozzi, S.: Cosmological searches for the neutrino mass scale and mass ordering, Thesis: PhD Stockholm U.(defense: 2019). arXiv:1907.08010 [astro-ph.CO]
[42] Kajita, T., Nobel lecture: discovery of atmospheric neutrino oscillations, Rev. Mod. Phys, 88 (2016) · doi:10.1103/RevModPhys.88.030501
[43] Gonzalez-Garcia, MC; Maltoni, M.; Salvado, J.; Schwetz, T., Global fit to three neutrino mixing: critical look at present precision, J. High Energy Phys., 1212, 123 (2012)
[44] Gonzalez-Garcia, MC; Maltoni, M., Phenomenology with massive neutrinos, Phys. Rept., 460, 1-129 (2008)
[45] Hannestad, S.; Schwetz, Thomas, Cosmology and the neutrino mass ordering, JCAP, 11, 035 (2016)
[46] Gonzalez-Garcia, MC; Maltoni, M.; Schwetz, T., Updated fit to three neutrino mixing: status of leptonic CP violation, JHEP, 11, 052 (2014)
[47] Esteban, Ivan, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP, 01, 087 (2014)
[48] Olive, KA, Review of particle physics, Chin. Phys., C38 (2014)
[49] Capozzi, F.; Valentino, ED; Lisi, E.; Marrone, A.; Melchiorri, A.; Palazzo, A., Global constraints on absolute neutrino masses and their ordering, Phys. Rev., D95, 096014 (2017)
[50] Cuesta, AJ, Neutrino mass limits: robust information from the power spectrum of galaxy surveys, Phys. Dark Univ., 13, 77-86 (2016)
[51] Di Valentino, E., Cosmological axion and neutrino mass constraints from planck 2015 temperature and polarization data, Phys. Lett. B, 752, 182-185 (2016)
[52] Upadhye, A., Neutrino mass and dark energy constraints from redshift-space distortions, JCAP, 1905, 041 (2019)
[53] Boyle, A.; Komatsu, E., Deconstructing the neutrino mass constraint from galaxy redshift surveys, JCAP, 03, 035 (2018)
[54] Zennaro, M.; Bel, J.; Dossett, J.; Carbone, C.; Guzzo, L., Cosmological constraints from galaxy clustering in the presence of massive neutrinos, Mon. Not. Roy. Astrono. Soc., 477, 491-506 (2018)
[55] Sprenger, T.; Archidiacono, M.; Brinckmann, T.; Clesse, S.; Lesgourgues, J., Cosmology in the era of Euclid and the square kilometre array, JCAP., 2019, 047 (2019)
[56] Wang, L-F; Zhang, X-N; Zhang, J-F; Zhang, X., Impacts of gravitational-wave standard siren observation of the Einstein telescope on weighing neutrinos in cosmology, Phys. Lett., 782, 87-93 (2018)
[57] Giusarma, E.; Vagnozzi, S.; Ho, S.; Ferraro, S.; Freese, K.; Kamen-Rubio, R.; Luk, K-B, Scale-dependent galaxy bias, CMB lensing-galaxy cross-correlation, and neutrino masses, Phys. Rev. D, 98 (2018)
[58] Mishra-Sharma, S.; Alonso, D.; Dunkley, J., Neutrino masses and beyond-\( \Lambda\) CDM cosmology with LSST and future CMB experiments, Phys. Rev. D, 97 (2018)
[59] Choudhury, SR; Choubey, S., Updated bounds on sum of neutrino masses in various cosmological scenarios, JCAP, 09, 017 (2018)
[60] Choudhury, S.R., Naskar, A.: Strong bounds on sum of neutrino masses in a 12 parameter extended scenario with non-phantom dynamical dark energy \((\omega (z)\ge -1)\) ”, Eur. Phys. J. C79 (2019). arXiv:1807.02860 [astro-ph.CO]
[61] Vagnozzi, S.; Brinckmann, T.; Archidiacono, M.; Freese, K.; Gerbino, M.; Lesgourgues, J.; Sprenger, T., Bias due to neutrinos must not uncorrect’d go, JCAP, 1809, 001 (2018)
[62] Brinckmann, T.; Hooper, DC; Archidiacono, M.; Lesgourgues, J.; Sprenger, T., The promising future of a robust cosmological neutrino mass measurement, JCAP, 1901, 059 (2019)
[63] Ade, P., Aguirre, J., Simons Observatory Collaboration, et al.: The simons observatory: science goals and forecasts. JCAP 1902, 056 (2019). arXiv:1808.07445 [astro-ph.CO]
[64] Kreisch, CD; Pisani, A.; Carbone, C.; Liu, J.; Hawken, AJ; Massara, E.; Spergel, DN; Wandelt, BD, Massive neutrinos leave fingerprints on cosmic voids, Mon. Not. Roy. Astrono. Soc., 488, 4413-4426 (2019)
[65] Vagnozzi, S.; Giusarma, E.; Mena, O.; Freese, K.; Gerbino, M.; Ho, S.; Lattanzi, M., Unveiling \(\nu\) secrets with cosmological data: Neutrino masses and mass hierarchy, Phys. Rev. D, 96 (2017)
[66] Giusarma, E.; Gerbino, M.; Mena, O.; Vagnozzi, S.; Ho, S.; Freese, K., On the improvement of cosmological neutrino mass bounds, Phys. Rev. D, 94 (2016)
[67] Froustey, J.; Pitrou, C.; Volpe, MC, Neutrino decoupling including flavour oscillations and primordial nucleosynthesis, JCAP, 12, 015 (2020) · Zbl 1484.83116
[68] Bennett, J.J. et al.: Towards a precision calculation of \(N_{\text{eff}}\) in the standard model II: Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED, 073 073.(2021) arXiv:2012.02726 [hep-ph]
[69] Aghanim, N., Planck Collaboration, et al.: Planck 2018 results-VI. Cosmological parameters. Astron. Astrophys. J. 641, A6 (2020). arXiv:1807.06209 [astro-ph.CO]
[70] Scolnic, DM; Jones, DO, The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined pantheon sample, Astrophys . J, 859, 101 (2018)
[71] Riess, AG, A comprehensive measurement of the local value of the hubble constant with 1 km/s/Mpc uncertainty from the hubble space telescope and the SH0ES team, ApJL, 934, L7 (2022)
[72] Akaike, H., A new look at the statistical model identification, IEEE Trans. Autom. control, 19, 716-723 (1974) · Zbl 0314.62039
[73] Liddle, AR, Information criteria for astrophysical model selection, MNRAS, 377, L74-L78 (2007)
[74] Albarran, I.; Bouhmadi-López, M.; Morais, J., Cosmological perturbations in an effective and genuinely phantom dark energy Universe, Phys. Dark. Univ., 16, 94-108 (2017)
[75] Lesgourgues, J.: The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview (2011) arXiv:1104.2932v2 [astro-ph.IM]
[76] Lesgourgues, J.; Tram, T., The cosmic linear anisotropy solving system (CLASS) IV: efficient implementation of non-cold relics, JCAP, 2011, 032 (2011)
[77] Padilla, LE; Tellez, LO; Escamilla, LA; Vazquez, JA, Cosmological parameter inference with Bayesian statistics, Universe, 7, 213 (2021)
[78] Brinckmann, T.; Lesgourgues, J., MontePython 3: boosted MCMC sampler and other features, Phys. Dark Univ., 24 (2019)
[79] Aghanim, N., Akrami, Y., Planck Collaboration, et al.: Planck 2018 results-V. CMB power spectra and likelihoods. Astron. Astrophys. J. 641, A5 (2020). arXiv:1907.12875
[80] Aghanim, N., Akrami, Y., Planck Collaboration, et al.: Planck 2018 results-VIII. Gravitational lensing. Astron. Astrophys. J. 641, A5 (2020). arXiv:1807.06210 [stro-ph.CO]
[81] Beutler, F.; Blake, C.; Colless, M.; Jones, DH; Staveley-Smith, L.; Campbell, L.; Lachlan, Q. Parker; Saunders, W.; Watson, F., The 6dF galaxy survey: baryon acoustic oscillations and the local Hubble constant, Mon. Not. Roy. Astrono. Soc., 416, 3017-3032 (2011)
[82] Ross, AJ; Samushia, L.; Howlett, C.; Percival, WJ; Burden, A.; Manera, M., The clustering of the SDSS DR7 main Galaxy sample: I. A 4 per cent distance measure at z = 0.15, Mon. Not. Roy. Astrono. Soc. J., 449, 835-847 (2015)
[83] Bouali, A.; Albarran, I.; Bouhmadi-Lopez, M.; Errahmani, A.; Ouali, T., Cosmological constraints of interacting phantom dark energy models, Phys. Dark. Univ., 34 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.