×

Finite time output feedback attitude tracking control for rigid body based on extended state observer. (English) Zbl 1459.93108

Summary: In this paper, the attitude tracking control problem of output feedback is investigated. A finite time extended state observer (FTESO) is designed through the homogeneous Lyapunov method to estimate the virtual angular velocity and total disturbances. Based on these estimated states, a finite time attitude tracking controller is developed. The numerical simulations are given to illustrate the effectiveness of the proposed control scheme.

MSC:

93C73 Perturbations in control/observation systems
70Q05 Control of mechanical systems
93B53 Observers
93C10 Nonlinear systems in control theory
93B07 Observability
93D15 Stabilization of systems by feedback
Full Text: DOI

References:

[1] Miyasaka, M.; Berkelman, P., Magnetic levitation with unlimited omnidirectional rotation range, Mechatronics, 24, 3, 252-264 (2014) · doi:10.1016/j.mechatronics.2014.02.001
[2] Hong, Y.; Xu, Y.; Huang, J., Finite-time control for robot manipulators, Systems & Control Letters, 46, 4, 243-253 (2002) · Zbl 0994.93041 · doi:10.1016/s0167-6911(02)00130-5
[3] Zhao, L.; Jia, Y., Finite-time attitude tracking control for a rigid spacecraft using time-varying terminal sliding mode techniques, International Journal of Control, 88, 6, 1150-1162 (2015) · Zbl 1316.93032 · doi:10.1080/00207179.2014.996854
[4] Chen, Z.; Huang, J., Attitude tracking of rigid spacecraft subject to disturbances of unknown frequencies, International Journal of Robust and Nonlinear Control, 24, 16, 2231-2242 (2014) · Zbl 1302.93080 · doi:10.1002/rnc.2983
[5] Thakur, D.; Srikant, S.; Akella, M. R., Adaptive attitude-tracking control of spacecraft with uncertain time-varying inertia parameters, Journal of Guidance, Control, and Dynamics, 38, 1, 41-52 (2015) · doi:10.2514/1.g000457
[6] Zhang, H.; Fang, J., Robust backstepping control for agile satellite using double-gimbal variable-speed control moment gyroscope, Journal of Guidance, Control, and Dynamics, 36, 5, 1356-1363 (2013) · doi:10.2514/1.59327
[7] Lizarralde, F.; Wen, J. T., Attitude control without angular velocity measurement: a passivity approach, IEEE Transactions on Automatic Control, 41, 3, 468-472 (1996) · Zbl 0846.93065 · doi:10.1109/9.486654
[8] Tsiotras, P., Further passivity results for the attitude control problem, IEEE Transactions on Automatic Control, 43, 11, 1597-1600 (1998) · Zbl 0989.93081 · doi:10.1109/9.728877
[9] Tayebi, A., Unit quaternion-based output feedback for the attitude tracking problem, IEEE Transactions on Automatic Control, 53, 6, 1516-1520 (2008) · Zbl 1367.93541 · doi:10.1109/tac.2008.927789
[10] Xiao, B.; Cao, L.; Ran, D., Attitude exponential stabilization control of rigid bodies via disturbance observer, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53, 1-9 (2019) · doi:10.1109/tcyb.2019.2945844
[11] Zou, A.-M., Finite-time output feedback attitude tracking control for rigid spacecraft, IEEE Transactions on Control Systems Technology, 22, 1, 338-345 (2014) · doi:10.1109/tcst.2013.2246836
[12] Gui, H.; Vukovich, G., Finite-time angular velocity observers for rigid-body attitude tracking with bounded inputs, International Journal of Robust and Nonlinear Control, 27, 1, 15-38 (2017) · Zbl 1353.93018 · doi:10.1002/rnc.3554
[13] Jiang, B.; Li, C.; Ma, G., Finite-time output feedback attitude control for spacecraft using “Adding a power integrator” technique, Aerospace Science and Technology, 66, 342-354 (2017) · doi:10.1016/j.ast.2017.03.026
[14] Hu, Q.; Jiang, B., Continuous finite-time attitude control for rigid spacecraft based on angular velocity observer, IEEE Transactions on Aerospace and Electronic Systems, 54, 3, 1082-1092 (2018) · doi:10.1109/taes.2017.2773340
[15] Na, J.; Jing, B.; Huang, Y.; Gao, G.; Zhang, C., Unknown system dynamics estimator for motion control of nonlinear robotic systems, IEEE Transactions on Industrial Electronics, 67, 5, 3850-3859 (2020) · doi:10.1109/tie.2019.2920604
[16] Na, J.; Yang, J.; Wang, S.; Gao, G.; Yang, C., Unknown dynamics estimator-based output-feedback control for nonlinear pure-feedback systems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53, 1-12 (2019) · doi:10.1109/tsmc.2019.2931627
[17] Na, J.; Wang, S.; Liu, Y.-J.; Huang, Y.; Ren, X., Finite-time convergence adaptive neural network control for nonlinear servo systems, IEEE Transactions on Cybernetics, 50, 6, 2568-2579 (2020) · doi:10.1109/tcyb.2019.2893317
[18] Gao, Z., Scaling and bandwidth parameterization based controller tuning, Proceedings of the 2003 American Control Conference
[19] Zhao, L.; Cheng, H.; Wang, T., Sliding mode control for a two-joint coupling nonlinear system based on extended state observer, Isa Transactions, 73, 130-140 (2018) · doi:10.1016/j.isatra.2017.12.027
[20] Wu, Y.-j.; Li, G.-f., Adaptive disturbance compensation finite control set optimal control for pmsm systems based on sliding mode extended state observer, Mechanical Systems and Signal Processing, 98, 402-414 (2018) · doi:10.1016/j.ymssp.2017.05.007
[21] Madonski, R.; Ramirez-Neria, M.; Stanković, M., On vibration suppression and trajectory tracking in largely uncertain torsional system: an error-based adrc approach, Mechanical Systems and Signal Processing, 134, 106300 (2019) · doi:10.1016/j.ymssp.2019.106300
[22] Hu, Q.; Jiang, B.; Friswell, M. I., Robust saturated finite time output feedback attitude stabilization for rigid spacecraft, Journal of Guidance, Control, and Dynamics, 37, 6, 1914-1929 (2014) · doi:10.2514/1.g000153
[23] Xiong, S.; Wang, W.; Liu, X.; Chen, Z.; Wang, S., A novel extended state observer, Isa Transactions, 58, 309-317 (2015) · doi:10.1016/j.isatra.2015.07.012
[24] Qian, C.; Lin, W., A continuous feedback approach to global strong stabilization of nonlinear systems, IEEE Transactions on Automatic Control, 46, 7, 1061-1079 (2001) · Zbl 1012.93053
[25] Shen, Y.; Xia, X., Semi-global finite-time observers for nonlinear systems, Automatica, 44, 12, 3152-3156 (2008) · Zbl 1153.93332 · doi:10.1016/j.automatica.2008.05.015
[26] Bhat, S. P.; Bernstein, D. S., Geometric homogeneity with applications to finite-time stability, Mathematics of Control, Signals, and Systems, 17, 2, 101-127 (2005) · Zbl 1110.34033 · doi:10.1007/s00498-005-0151-x
[27] Shen, Y.; Huang, Y., Uniformly observable and globally lipschitzian nonlinear systems admit global finite-time observers, IEEE Transactions on Automatic Control, 54, 11, 2621-2625 (2009) · Zbl 1367.93097
[28] Haskara, I., On sliding mode observers via equivalent control approach, International Journal of Control, 71, 6, 1051-1067 (1998) · Zbl 0938.93505 · doi:10.1080/002071798221470
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.